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Breakdown of the Sharvin limit in spin pumping with interfacial Rashba spin-orbit coupling
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We theoretically investigate the role of the interfacial Rashba spin-orbit coupling in spin pumping based on
a nonperturbative calculation. A nonmonotonic behavior is predicted in the Rashba-strength dependence of the
Gilbert damping coefficients. We show that the in-plane damping component can exceed the Sharvin limit thanks
to the Rashba-field-induced torque. Nevertheless, the pumped spin current remains below the Sharvin limit and
satisfies the Onsager reciprocity relations with the spin-current-induced spin-transfer torque.
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I. INTRODUCTION

As a spin current in a nonmagnetic normal metal (NM) is
reflected by or transmits through a ferromagnetic (FM) layer,
the exchange of angular momentum between the spin current
and the magnetic layer will rotate the polarization direction
of the spin current and simultaneously exert a spin-transfer
torque on the magnetization [1–4]. This phenomenon has
been extensively studied in the past decades for its promising
applications in future spintronic devices [5,6]. In a magneto-
electronic dc circuit theory, the spin-transfer torque produced
by the incoming spin current, due to spin accumulation μs , is
expressed as [7]

τ � g↑↓
r m × μs × m + g

↑↓
i μs × m. (1)

The first term is even with respect to the magnetization direc-
tion m and is usually referred to as the dampinglike torque,
while the second one with linear order in m is a fieldlike
torque. The parameters g

↑↓
r and g

↑↓
i are the real and imagi-

nary parts of the phenomenological spin mixing conductance,
which, in the literature, is usually written as [7–9]

g↑↓ =
N∑

nn′=1

δnn′ − r
↑
nn′ (r

↓
nn′ )∗. (2)

Here, r
↑(↓)
nn′ is the reflection coefficient of the spin-up (down)

species from the n′th incoming channel of NM to the nth
outgoing channel. Apparently, g

↑↓
r from Eq. (2) has an upper

limit of twice of the total transport channels, i.e., the Sharvin
conductance [7]. This limit corresponds to the situation where
all incoming electrons flip their transverse spin polarization.

The inverse process of the spin-current-induced torque is
called spin pumping, where the magnetization dynamics of
FM injects a spin current into a NM [8],

I s = g↑↓
r m × ṁ + g

↑↓
i ṁ. (3)
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According to the angular momentum conservation, the torque
acting back on the magnetization is

τ = −I s . (4)

The first term in Eq. (3) is of the same structure as the
Gilbert damping torque and gives rise to an enhancement of
the Gilbert damping coefficient [8,10–15],

�α = h̄γ

4πMsV
g↑↓

r , (5)

in which γ is the gyromagnetic ratio, Ms is the saturation
magnetization, and V is the volume of the FM. Obviously,
the damping enhancement given by Eq. (5) is also limited by
the Sharvin conductance.

It is important to notice that Eqs. (1) and (3) are in principle
valid only for an ideal situation without any other source
of spin torques. However, at the interface of a NM | FM
hybrid structure, an interfacial Rashba-type spin orbit cou-
pling (SOC) does naturally exist and is able to supply spin-
orbit torques [16–25]. This implies the incompleteness of
Eqs. (1) and (3) and the possible breakdown of Eq. (4). One
fundamental question one may ask is whether the interfacial
SOC can break the Sharvin limit of the spin mixing con-
ductance and/or the Gilbert damping enhancement discussed
above. A perturbation approach was recently developed to
study the effect of the interfacial Rashba SOC in spin pumping
[19], where an interfacial spin memory loss [18,26] and an
anisotropic correction to the Gilbert damping were shown.
The SOC-induced anisotropic damping was recently observed
in experiment [27]. The influence of SOC on the Sharvin limit
motivates the present work.

As the perturbation approach is applicable only for weak
SOCs, a general formalism for the Gilbert damping has been
derived from the energy loss of the magnetic subsystem and
written in the form of the scattering matrix Ŝ as [28,29]

�αij = h̄γ

4πMsV
Tr

(
∂mi

Ŝ∂mj
Ŝ†). (6)
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In this work, we employ this formalism to calculate the
damping enhancement of ferromagnetic insulators (FMIs) in
spin pumping by taking into account the Rashba SOC at
the interface. We predict a nonmonotonic behavior in its
dependence on the SOC strength with a peak forming in the
intermediate SOC strength regime. The damping coefficient
near the peak can become larger than the Sharvin limit. We
find that these features are dominated by a few hot transport
channels in momentum space and, according to an alternative
two-potential-model calculation, result from the interference
of the multiple reflection waves between the Rashba barrier
and the interface potential. During such a multiple reflection
process, a spin-orbit torque is gradually accumulated and
transferred to FMIs mediated by the propagating electrons.
In contrast, we find that the spin current injected into the
NM remains below the Sharvin limit. We also calculate the
spin-transfer torque induced by an incoming spin current and
confirm the Onsager reciprocity relations.

II. MODEL

For an interface lying in the x-y plane, the total Hamilto-
nian reads

H (z) = p̂2

2m
+ (V0 + EZσ · m)�(z)

+ βδ(z − z0)(p̂xσy − p̂yσx ), (7)

with EZ and V0 being the exchange energy and spin-
independent potential in FMI (z > 0), respectively. The
Rashba term locates at the interface (z0 = 0). By solving the
boundary conditions of the wave function

�|0+ = �|0− , (8)

∂z�|0− − ∂z�|0+ − 2mβ(p̂xσy − p̂yσx )�|0 = 0, (9)

under the interfacial potential, one can derive the scat-
tering matrix. In the presence of the magnetization, it
is convenient to solve Eqs. (8) and (9) under the spin
basis with respect to the magnetization direction m =
(sin θ cos φ, sin θ sin φ, cos θ ), i.e.,

χ+ =
(

e−iφ/2 cos(θ/2)

eiφ/2 sin(θ/2)

)
, (10)

χ− =
(−e−iφ/2 sin(θ/2)

eiφ/2 cos(θ/2)

)
. (11)

By substituting the scattered wave functions

�+
z<0 = χ+eikzz + r++χ+e−ikzz + r−+χ−e−ikzz, (12)

�+
z>0 = t++χ+e−p̃+kzz + t−+χ−e−p̃−kzz, (13)

and

�−
z<0 = χ−eikzz + r−−χ−e−ikzz + r+−χ+e−ikzz, (14)

�−
z>0 = t−−χ−e−p̃−kzz + t+−χ+e−p̃+kzz, (15)

into Eqs. (8) and (9), we obtain the scattering/reflection matrix(
r++ r+−
r−+ r−−

)
= −1 + 2

(1 + iQ1)(1 + iQ2) + |P1|2

×
(

1 + iQ2 −iP1

−iP ∗
1 1 + iQ1

)
(16)

with

Q1 = p̃+ − β̃k̃‖ sin θ sin(φ − ϕ), (17)

Q2 = p̃− + β̃k̃‖ sin θ sin(φ − ϕ), (18)

P1 = −β̃k̃‖[cos θ sin(φ − ϕ) − i cos(φ − ϕ)]. (19)

Here, ϕ is the azimuthal angle of the incoming wave
vector k = (k‖ cos ϕ, k‖ sin ϕ, kz). Notice that the wave
functions in FMI are all evanescent. The dimensionless
quantities are p̃± =

√
k̃2
V ± k̃2

Z − 1, k̃2
V = 2mV0/k2

z , k̃2
Z =

2mEZ/k2
z , k̃‖ =

√
k2
x + k2

y/kz, and β̃ = 2mβ. With a unitary

transform, we rewrite the scattering matrix under the spin
basis along the ẑ direction as

Ŝk = 1

F [2 + i(p̃+ + p̃−) − i(p̃+ − p̃−)m · σ

+ 2iβ̃k̃‖h · σ ] − 1, (20)

with h = ẑ × k̂ being the direction of the Rashba field for a
given wave vector k. The third and fourth terms in the brackets
of Eq. (20) reflect the spin precession about the exchange field
and Rashba field, respectively. The factor

F =1 − (p̃+ + p̃−)2

4
+

[
p̃+ − p̃−

2
m − β̃k̃‖h

]2

+ i(p̃+ + p̃−), (21)

revealing the interplay between them. The derivative of Ŝk in
Eq. (6) contains an additional piece due to the m dependence
of F , that is,

∂mj
Ŝk = −i(p̃+ − p̃−)

F σj − (Ŝk + 1)
1

F ∂mj
F

= (p̃+ − p̃−)

F [−iσj + β̃k̃‖hj (Ŝk + 1)], (22)

leading to

�αij =
∑

k

2(p̃+ − p̃−)2

|F |2
[
δij + 2(β̃k̃‖)2hihj

(p̃+ + p̃−)2

|F |2
]
.

(23)

The prefactor h̄γ (4πMsV ) has been omitted here.

III. RESULTS

A. Gilbert damping with interfacial Rashba SOC

As the inverse spin Hall measurement in spin pumping
experiments requires the magnetization to be parallel to the
interface [13,30–33], in the following we restrict ourselves to
the in-plane magnetization configuration and, without loss of
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FIG. 1. Normalized enhanced damping component �αyy (solid
curves) and �αzz (dashed curves) as functions of the Rashba co-
efficient with different exchange strengths. The black dotted curve
represents the Sharvin limit. The inset zooms in the area with small
values. In the calculation, we take V0 = 10EF with EF = k2

F /(2m)
being the Fermi energy.

generality, take m‖x̂. Equation (23) thus gives two nonvanish-
ing damping parameters:

�αyy =
∑

k

2(p̃+ − p̃−)2

|F |2
[

1 + 2β̃2k̃2
x (p̃+ + p̃−)2

|F |2
]
, (24)

�αzz =
∑

k

2(p̃+ − p̃−)2/|F |2. (25)

Obviously, both damping components vanish in the absence
of the exchange coupling (p̃+ = p̃−). For a finite exchange
strength, it is also easy to demonstrate that they reduce to
the real part of Eq. (2), g

↑↓
r = 2(p̃+ − p̃−)2/[(1 − p̃+p̃−)2 +

(p̃+ + p̃−)2], at a vanishing Rashba SOC.
The Rashba term modifies both damping components via

the denominator

|F |2 =
{

1 − (p̃+ + p̃−)2

4
+

[
β̃k̃y + p̃+ − p̃−

2

]2

+ β̃2k̃2
x

}2

+ (p̃+ + p̃−)2 (26)

and also introduces an additional piece in the in-plane damp-
ing coefficient. Although the correction in |F |2 can enhance
both components, �αzz remains below the Sharvin limit for
any parameters. Very interestingly, as shown in Fig. 1, the
other component �αyy (normalized by the number of chan-
nels) is able to exceed the Sharvin limit “2”! This thus gives
a positive answer to the question raised in the Introduction. In
the rest of this paper, we will analyze the origin of this feature
in detail.

In Fig. 1, both �αyy and �αzz behave nonmonotonically
as the Rashba SOC strength increases. To understand this,
we derive asymptotic expressions in weak and strong Rashba
SOC limits.

In the weak Rashba SOC limit, we do Taylor expansion up
to the leading (quadratic) order in the Rashba coefficient and
obtain

�αyy � A

6π

(p+ − p−)2

(p+p−)2

(
3 + p2

+ + p2
− + 4p+p−

p2+p2−
β̃2k2

F

)
k4
F ,

(27)

�αzz � A

6π

(p+ − p−)2

(p+p−)2

(
3 + 2

β̃2k2
F

p+p−

)
k4
F . (28)

Both increase with Rashba strength [19]. Here, A represents
the area of the cross section and kF is the Fermi wave vector
in the NM.

In the opposite limit, it is interesting to notice that |F |2 in
Eq. (26) reaches a minimal value (p̃+ + p̃−)2 once the wave
vector satisfies the equation of circle,

k2
x +

(
ky + p+ − p−

2β̃

)2

= k2
r . (29)

The radius reads

kr = 1

β̃

[
(p+ + p−)2

4
− k2

z

]1/2

, (30)

inversely proportional to the Rasbba strength. In the case of
a large-gap FMI, k2

V ± k2
Z � k2

F , hence kr � (
√

k2
V + k2

Z +√
k2
V − k2

Z )/(2β̃ ), depending only on β, m, V0, and EZ .
When the Rashba coefficient is as large as to have kr < kF ,
we estimate

�αyy � A(p+ − p−)2

2(p+ + p−)

⎛
⎝

√
k2
F − k2

r

β̃2
+ k2

r√
k2
F − k2

r

⎞
⎠, (31)

�αzz � A(p+ − p−)2

2(p+ + p−)

√
k2
F − k2

r

β̃2
. (32)

In particular, if kr 
 kF , we have k2
F − k2

r ≈ k2
F . As a result,

both �αyy and �αzz become inversely proportional to β̃2 and
decrease with increasing Rashba strength. With the param-
eters used for Fig. 1, the second term in Eq. (31) is domi-
nant, explaining the significant difference between �αyy and
�αzz.

In Fig. 2, we plot the contribution from different (lateral
momentum) transport channels for three Rashba strengths.
The circular shape defined in Eq. (29) is clearly seen. The
upper panel (�αyy) also shows hot spots with values much
greater than 2, especially for those at the edge of the middle
figure. This is because the additional term with k̃2

x in Eq. (24)
diverges for kz � kF . Physically, this means that the scattering
channels with those wave vectors can dissipate spin angular
momentum orders of magnitude more than simply flipping
the spin of the incoming electrons. This, according to our
discussion in the Introduction, implies a huge torque induced
by the Rashba SOC.

We should point out that such features also exist when the
magnetization tilts away from the x-y plane. In particular, for
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FIG. 2. Single channel contribution to Gilbert damping compo-
nents in Eqs. (24) and (25) with in-plane magnetization m‖x̂. Here
V0 = 10EF and EZ = 8EF .

m‖ẑ, at the circle in the momentum space

k2
x + k2

y = 1

β̃2

(
p+p− − k2

z

)
, (33)

the factor

|F |2 = [1 − p̃+p̃− + (β̃k̃‖)2]2 + (p̃+ + p̃−)2 (34)

arrives a minimum and gives rise to the huge enhancement.
Note that the enhancement in this configuration is isotropic,
i.e., �αxx = �αyy .

B. Two-potential model

To disclose the microscopic origin of such a huge SOC-
induced torque, we slightly shift the Rashba SOC away from
its natural location by introducing an infinitesimal z0 < 0 in
Eq. (7). The advantage of such a two-potential model is that,
in addition to the total reflection matrix, it also supplies the
detailed information of the interplay between the Rashba SOC
and the exchange interaction. More specifically, it allows us
to compute the spin torques acting on the magnetization and
lattice (via the SOCs) from the net spin current within the
inserting layer and the one injected into the NM, respectively.

The transmission and reflection matrices due to the Rashba
SOC potential can be derived by using −i to replace p̃± in
Eqs. (13) and (15). The solutions are

t̂k = 4 + 2iβ̃ k̃‖ × σ · ẑ

4 + (β̃k̃‖)2
, (35)

r̂k = t̂k − 1. (36)

With the reflection matrix due to the potential barrier of FMI

r̂b = Ŝkβ=0, (37)

it is straightforward to write out the overall reflection matrix
by the two potentials

Ŝ ′
k = (1 + r̂b )(1 − r̂k r̂b )−1 t̂k − 1. (38)

FIG. 3. (a) Scattering process in spin pumping configuration.
Illustration of spin current flows and spin-transfer torques in (b) spin
pumping and (c) spin-current-induced magnetization dynamics.

By substituting Eqs. (36) and (37), we get exactly the same
result as Ŝk in Eq. (20) and reproduce Eqs. (24) and (25) by
using Eq. (6).

On the other hand, in the spin pumping scenario of the
present two-potential model, the variation of the magnetiza-
tion direction in the FMI first creates a primary spin current
into the inserting layer. Since there is no SOC at the modified
NM | FMI interface, this pumped primary spin current is
simply determined by Eq. (3). We describe the polarization
of one individual electron contributing to this spin current by
a set of wave functions leaving the FMI,

∣∣ψ1±
p

〉 =
√

g
↑↓
r |±m × ṁ〉, (39)

∣∣ψ2±
p

〉 = i

√
|g↑↓

i ||±ṁ〉, (40)

with |±ξ 〉 representing the wave function with polarization
along the ±ξ̂ direction and amplitude |ξ |. According to
Eq. (16), the reflection coefficients at z = 0 are

r↑ = r++ = 1 − ip̃+
1 + ip̃+

, (41)

r↓ = r−− = 1 − ip̃−
1 + ip̃−

, (42)

and therefore the bare spin mixing conductance in Eqs. (39)
and (40) can be expressed as

g↑↓
r = 2(p̃+ − p̃−)2

(1 − p̃+p̃−)2 + (p̃+ + p̃−)2
, (43)

g
↑↓
i = − 2(p̃+ − p̃−)(1 + p̃+p̃−)

(1 − p̃+p̃−)2 + (p̃+ + p̃−)2
. (44)

Further we write out the total left- and right-moving wave
functions in the inserting layer after all orders of reflection
process as

|ψl〉 = |ψp〉 + (1 − r̂br̂k )−1|ψp〉, (45)

and

|ψr〉 = r̂k(1 − r̂br̂k )−1|ψp〉, (46)

respectively. The scattering processes are illustrated in
Fig. 3(a). The total out-going wave function transmitted into
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the NM reads

|ψT 〉 = t̂k|ψl〉. (47)

Note that, to imitate the realistic (z0 = 0) situation, we have
assumed that the inserting layer is too narrow to host a
localized standing wave in between and we have disregarded
the phase factor eikzz in the spatial wave function.

With the knowledge of the above wave functions, we
compute the net spin current flowing within the inserting
layer and the one going into the NM. The former gives the
spin-transfer torque on the magnetization,

τ |FMI = 〈ψr |σ |ψr〉 − 〈ψl|σ |ψl〉, (48)

and the latter reads

I s |NM = 〈ψT |σ |ψT 〉. (49)

In the calculation, we focus on the transport channels with
the in-plane wave vector k‖x̂ because of the fact that the
huge enhancement of Gilbert damping mainly comes from
the finite-kx channels [see Eq. (24) and Fig. 2]. Therefore,
the Rashba field h‖ŷ is perpendicular to the exchange axis
m. By using |ψ1±

p 〉 and |ψ2±
p 〉 defined in Eqs. (39) and (40),

we obtain

τ |FMI = [
τ
(
ψ1+

p

) − τ
(
ψ1−

p

) + τ
(
ψ2+

p

) − τ
(
ψ2−

p

)]/
2

= −m × Gr · ṁ − Gi · ṁ − Ghhh × h × ṁ, (50)

and

I s |NM = [
I s

(
ψ1+

p

) − I s

(
ψ1−

p

) + I s

(
ψ2+

p

) − I s

(
ψ2−

p

)]/
2

= Gr m × ṁ + Gi · ṁ − Ghhh × h × ṁ

− 2Ghh × ṁ + Ghm(h × m) × ṁ, (51)

where

Grzz = Gr, (52)

Gryy = Gr

(
1 + β̃2k̃2

‖
)
, (53)

Gizz = Gi, (54)

Giyy = Gi − Ghβ̃k̃‖, (55)

Ghh = Ghβ̃k̃‖, (56)

Ghm = Gh(p̃+ − p̃−), (57)

with Gr = 2(p̃+ − p̃−)2/|Fky=0|2, Gi = −2(p̃+ − p̃−)
(1 + p̃+p̃−)/|Fky=0|2, and Gh = 2β̃k̃‖(p̃+ − p̃−)/|Fky=0|2.

Compared to the scalar parameters in Eq. (3), we now
have two diagonal tensors, Gr and Gi , in the first and second
terms of Eq. (50). For the Gilbert damping tensor Gr , the
z component Grzz is exactly the same as the expression in
�αzz in Eq. (25). The y component Gryy contains a correc-
tion proportional to β̃2k̃2

‖ , which is very similar to �αyy in
Eq. (24). As discussed in the previous section, this factor is
the key of the huge damping. Notice that the prefactor in front
of β̃2k̃2

‖ in Eq. (24) is missing in Gryy , perhaps because of
the fact that the higher-order effects due to the dynamics are
not fully included in this simplified calculation. Nevertheless,

this simplified calculation does reproduce the main features of
Eqs. (24) and (25).

Notice that for those hot spots in the upper middle plot in
Fig. 2, the dimensionless lateral wave vector k̃‖ → ∞, which
leads to t̂k ∼ 0. In other words, the Rashba SOC confines
these electrons within the inserting layer. During the contin-
uously forth and back scatterings between the two scattering
potentials, electrons receive the spin-orbit torque (τR) from
the Rashba potential and release the torque to the interface
with the FMI via the exchange interaction as illustrated in
Fig. 3(b). As a consequence, the total spin torque acting on
the magnetization is amplified by such a multiple-scattering
process and the interference therein. We should point out that
the interfacial “localized” states are actually not a crucial
condition for a single channel to go beyond Grzz = 2, as
shown by the hot spots locating at the finite k̃‖ regime in the
upper right figure of Fig. 2.

Actually the dampinglike torque in Eq. (50) can be alterna-
tively written as

m × Gr · ṁ = Gr [m × ṁ − β̃2k̃2
‖ h × h × (m × ṁ)]. (58)

The second piece in form of h × h × (m × ṁ) however dis-
appears in the pumped spin current in Eq. (51), indicating that
the overdamped angular momentum in the FMI is compen-
sated completely by the torque induced by the Rashba SOC.
Since Gr is always smaller than 2, the pumped spin current
cannot break the Sharvin limit as expected. The last two terms
in Eq. (51) show that the presence of Rashba SOC also drives
spin current components polarized along the magnetization
direction.

Finally, we apply our two-potential model to test the
Onsager reciprocal process of spin pumping, i.e., the magne-
tization dynamics driven by an spin current flowing toward
the interface. For this purpose, we calculate the spin torque
created by an incoming spin-polarized electronic wave func-
tion |ψin〉. After it transmits through the Rashba potential,
similar to the spin pumping case discussed above, multiple
scatterings happen. The overall wave functions of the left- and
right-moving components in the inserting layer are now given
by

|ψl〉 = (1 − r̂k r̂b )−1 t̂k|ψin〉, (59)

and

|ψr〉 = r̂b|ψl〉. (60)

We assume that the incoming spin current I s0 [see Fig. 3(c)]
is driven by a spin chemical potential μs and calculate the
torque acting on the magnetization of FMI with the same
technique discussed above. The incoming wave functions in
these calculations are assumed to be

|ψ±
in 〉 = |±μs〉. (61)

The result can be expressed as

τ = [τ (ψ+
in ) − τ (ψ−

in )]/2

= Gr m × μs × m + Gi · μs × m − 2Gh(h × μs ) × m

+Ghh(h × h × μs ) × m − Ghm[(h × m) × μs] × m,

(62)
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where the first two terms recover those in SOC-free mag-
netoelectronic dc circuit theory [see Eq. (1)], but with a
correction due to the SOC. Actually, each piece in Eq. (62)
can be obtained if we replace ṁ in Eq. (51) by μs and
add a global cross product ×m. This suggests the Onsager
reciprocal relations.

IV. SUMMARY

In summary, we have performed an analytical study on
the spin pumping of the NM | FMI bilayer structure with
the interfacial Rashba spin-orbit coupling fully included.
The Gilbert damping shows a nonmonotonic behavior as the

Rashba strength increases. Due to the additional torque gen-
erated by the Rashba spin-orbit coupling, the Gilbert damping
coefficient can become larger than the upper limit given by
a simple exchange model. This is consistent with a recent
first-principles calculation [34]. Finally, we demonstrate that
the interfacial Rashba interaction maintains the Onsager re-
ciprocal relations between spin pumping and spin-transfer
torque.
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