
PHYSICAL REVIEW B 104, 014305 (2021)

Dancing synchronization in coupled spin-torque nano-oscillators
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We report a type of synchronization, termed dancing synchronization, between two spin-torque nano-
oscillators (STNOs) coupled through spin waves. Different from the known synchronizations in which two
STNOs are locked with various fixed relative phases, in this synchronized state two STNOs have the same
frequency, but their relative phase varies periodically within the common period, resulting in a dynamic waving
pattern. The amplitude of the oscillating relative phase depends on the coupling strength of two STNOs, as well
as the driven currents. The dancing synchronization turns out to be universal and can exist in two nonlinear
Van der Pol oscillators coupled both reactively and dissipatively. Our findings open the door for new functional
STNO-based devices.
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I. INTRODUCTION

Synchronization is the coordination of different parts of a
system working in harmony and is a ubiquitous phenomenon
that has been observed in various branches of science ranging
from physical systems to chemical and biological systems
with gain and loss [1–5]. Together with other nonlinear ef-
fects and beyond, it increases the complexity of nature and
organizes things at higher levels [6]. Synchronization was
first discovered by Huygens in 1665 [7]. He found that two
pendulum clocks hung side by side would soon swing with the
same frequency and 180◦ out of phase regardless their initial
conditions as long as their intrinsic frequencies were not too
different from each other and their coupling strengths were not
too weak. This completely out of phase synchronized motion
is very robust against external disturbances. Since then, our
understanding of synchronization has been greatly advanced.

Two coupled nonlinear oscillators in currently known syn-
chronizations oscillate with the same frequency but can have
different constant relative phases [1,7–9]. They are relatively
simple and can be characterized by the frequency and their
relative phase. For more exotic synchronizations, one needs
to couple many nonlinear oscillators as a cluster or a network
[10] that is commonly described by the Kuramoto model [9].
As summarized by Matheny and coworkers [11], the simplest
synchronizations of many oscillators are ones in which all
oscillators have the same phase or a few fixed relative phases.
The relative phases of a synchronized oscillator network can
even form a complicated static pattern. Sometimes, a network
can fragment into several clusters, and motions of oscillators
in each cluster are synchronized with their own static phase
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pattern. In a word, the patterns of phase difference among
oscillators in known synchronizations are static and do not
change with time whether in two coupled oscillators or in an
oscillator network.

Spin-torque nano-oscillators (STNOs) are important non-
linear oscillators in magnetics. STNOs [12,13] are self-
sustained oscillations driven by current-generated spin-
transfer torque (STT) [14,15]. Self-sustained oscillations are
a well-known nonlinear phenomenon widely existing in sys-
tems with gain and loss [1,16,17]. STNOs are an active
research topic in academia and industry because of their exotic
applications in nanotechnology such as microwave genera-
tion at nanometer scale that is crucial for microwave-assisted
recording [18,19]. Output power is an important issue in
STNOs [20] because microwave power from a single STNO
is of the order of picowatts due to its tiny size [21]. One
promising way of increasing the output microwave power is
through an in-phase synchronization of many STNOs [22,23].
Several STNOs can be coupled by static magnetic interaction
[24–26]. This coupling is effective only when two STNOs are
separated within a few nanometers, which limits the possi-
ble number of STNOs in synchronization. Coupling between
STNOs through spin waves is order of magnitudes larger than
that by static magnetic interaction [20,27–32]. Like other non-
linear systems, various aspects of coupled STNOs have been
extensively studied, such as intrinsic mutual phase locking
[22,33–35], STNOs due to the vortex state [36], and fractional
synchronization [37]. The temperature [38] and external field
[39] have been used to control the frequency, the linewidth of
STNOs, and synchronization.

In this study, we report a type of synchronization of two
STNOs coupled by spin waves. In this synchronization the
relative phase of two oscillators varies periodically with time,
instead of being constant. Such an exotic synchronization is
termed dancing synchronization. Let us use the motion of two
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FIG. 1. Illustration of two types of synchronizations. The red
and yellow clocks illustrate a conventional in-phase synchronization.
Two clocks point to exactly the same position at all times. The red
and blue clocks illustrate a dancing synchronization. Two clocks
point to 12 o’clock at t = 0 and complete a cycle in exactly 12 h.
In between, the two clocks point in different directions most of the
time.

coupled clocks, shown in Fig. 1, to explain the differences
between conventional synchronizations and dancing synchro-
nizations. The red clock (the first row) is in synchronization
with both the yellow clock (the second row) and the blue
clock (the third row) with the same periods, say 12 h. The
first and second rows (red and yellow clocks) illustrate several
moments of two clocks in a conventional synchronization
in which two clocks are in phase (always pointing in the
same direction at all times). The first and third rows (red and
blue clocks) schematically illustrate relative phases of the two
clocks in a dancing synchronization where, within one period,
the blue clock rotates slower than the red clock in the first and
third phases of the period but faster than the red clock in the
second and last phases of their period. The distinct difference
of the dancing synchronization from the known ones is that
the relative phase of the red and blue clocks varies periodically
with the synchronized frequency.

This paper is organized as follows. Section II includes the
model description of two coupled STNOs, the methodology,
and a demonstration of dancing synchronization. Section III
shows that dancing synchronization is universal and exists in
well-known complex amplitude nonlinear oscillators and Van
der Pol oscillators when there are both reactive and dissipative
couplings. Then the main results are summarized.

II. DANCING SYNCHRONIZATION IN COUPLED STNOs

A. Model and methodology

Our model, as shown in Fig. 2, consists of two nanopillar
STNOs coupled through spin waves in the magnetic insu-
lating layer physically connected with STNOs. Each STNO
is made from a magnetic multilayer, as shown in Fig. 2(a),
which consists of a polarizer of a perpendicularly magnetized
layer [e.g., Pt/(Co/Pt)5] to generate spin-polarized current,
and a free layer with in-plane magnetization on top of the
polarizer separated by either a nonmagnetic metal such as
Cu or a nonmagnetic insulator such as MgO. Under the STT
due to the spin-polarized current from the polarizer, the spins
in the free layer undergo a self-sustained precession. The
self-sustained precession can be detected through tunneling

FIG. 2. Sketch of the model. (a) A typical structure of a spin
valve in an STNO. Self-sustained precession of spins in the free layer
is the result of a limit-cycle solution of the LLG equation under
the spin-transfer torque from spin-polarized current that, in turn,
is obtained by passing current through the polarizer layer. (b) Two
STNOs connected by a magnetic insulating film are coupled by spin
waves in the film. d is the distance between two STNOs.

magnetoresistance [40,41] of the analyzer on top of the free
layer separated by another nonmagnetic layer such as a thin
Cu film. The analyzer is a thick ferromagnetic film whose
magnetization is pinned by an antiferromagnetic layer (e.g.,
Ir-Mn) such that self-sustained magnetization precession of
the free layer can generate an oscillatory voltage between the
top and bottom layers of the whole nanopillar shown in Fig. 2.
Two STNOs have a nominal size of 70 × 60 nm2, and free-
layer thickness is 3 nm. The free layer is assumed to be made
of Co with a saturation magnetization of Ms,Co = 886 kA/m,
a magnetic anisotropy coefficient of K = 4453 J/m3 (parallel
to the line from the center of the left STNO to the center
of the right STNO), an exchange stiffness constant of ACo =
25 pJ/m, and a Gilbert damping constant of α = 0.02 [42].
Our two STNOs have slightly different spin polarizations P
of P1 = 0.38 for the left STNO and P2 = 0.44 for the right
one. The intrinsic oscillation frequencies of the two isolated
STNOs under a current density of 1.435 × 107 A/cm2 are
9.87 and 10.20 GHz, respectively. An yttrium iron garnet
(YIG) film with a thickness of 3 nm connects two STNOs
as shown in Fig. 2. The material parameters of YIG are
AYIG = 4.2 pJ/m and KYIG = 754 J/m3 [43]. The interface
(between the YIG film and STNOs) exchange coupling is
assumed to be Aeff = 2ACoAYIG/(ACo + AYIG) [44]. Thus, two
STNOs couple through spin waves in the YIG film gener-
ated by the STNOs [20,27–30], as well as static magnetic
interaction [24–26].

Spin precession in STNO free layers will generate and
modify spin waves in the YIG film such that two STNOs can
interact with each other through the exchange of spin waves.
This spin wave mediated coupling is much stronger [29] than
the direct magnetic-dipole interactions between two STNOs
when they are close to each other. The STNO separation,
material parameters, and applied electrical current can be used
to control the effective coupling of STNOs. We investigate
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FIG. 3. A snapshot of the spin distribution of the system in
synchronization. The arrows denote the direction of the in-plane
component of magnetization, and the color encodes the information
about mz.

the spin dynamics of the hybrid structure consisting of free
layers of STNOs and the YIG film under the injection of spin-
polarized currents. The current density has a nonzero value
only within the free layers of STNOs. The thermal effect, the
field generated from the analyzer layer (not show), and the
field induced by charge current are ignored. The spin dynam-
ics of the system is governed by the Landau-Lifshitz-Gilbert
(LLG) equation,

dm
dt

= −γ m × Heff + α

(
m × dm

dt

)
+ a(m × mp × m), (1)

where m, γ , t , and Heff are, respectively, the unit vec-
tor of the magnetization, gyromagnetic ratio, the time, and
the effective magnetic field, Heff = 2A

μ0Ms
∇2m + 2K

μ0Ms
mzẑ +

Hd, which includes the exchange field, the anisotropic
field, and the demagnetizing field Hd. Coefficient a =
| h̄
μ0e | J

dMs

Pλ2

(λ2+1)+(λ2−1)(m·mp ) describes the Slonczewski torque,
where h̄, d , Ms, J , e, μ0, and P are the reduced Planck
constant, the thickness of the free layer, the saturation mag-
netization of the free layer, the charge current density, the
electron charge, the vacuum permeability, and the polar-
ization of the charge current, respectively. Under a proper
spin-polarized current, the spins in the free layer undergo a
self-sustained precession. Equation (1) for the whole hybrid
system of the YIG film and free layers in STNOs is numer-
ically solved by using the Object Oriented MicroMagnetic
Framework (OOMMF) [44]. To balance the speed and accuracy,
the cell size used in this study is 1 × 1 × 3 nm3.

Initially, spins of the left STNO are all along the x direc-
tion, and all spins of the right STNO are in the yz plane and
45◦ away from the z axis. Under an electric current density
of 1.435 × 107 A/cm2, two STNOs are synchronized after a
few nanoseconds when the distance between STNOs is d =
22 nm. Figure 3 is a typical snapshot of the spin configuration
of two STNOs in the synchronization where spins in both
STNOs and YIG do not align along the same direction even
in the synchronized state because of the edge and interface
effect.

B. Coupling length of the STNOs with the spin wave in YIG

We first study the coupling distance of the two STNOs
through the spin waves in the YIG film. We use OOMMF to
simulate two systems identical to the one described above ex-
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FIG. 4. Time evolution of phase differences (a) with spin-wave
coupling and (b) with only dipolar coupling for various distances and
a fixed charge current density of 1.435 × 107 A/cm2.

cept that one of them does not have the YIG film such that two
STNOs couple to each other through the dipolar field. Thus,
one can attribute the difference in the two systems to the spin
wave mediated coupling. To see different behaviors of the two
systems, we collect time evolution data of the average mag-
netization mi(t ) of two STNOs, where i = 1, 2 label the two
STNOs. The angles of the in-plane component of mi(t ) with
the x axis are denoted φi(t ). The time dependence of the phase
difference φ2(t ) − φ1(t ) can tell synchronizations from non-
synchronizations. φ2(t ) − φ1(t ) varies over the 2π range in a
nonsynchronized motion, while it is constant in a conventional
synchronization. Our OOMMF simulation results are shown in
Fig. 4(a) for system with a YIG film and in Fig. 4(b) for
system without a YIG film. Indeed, both nonsynchronizations
[for d = 70 nm in Fig. 4(a) and d = 10, 22 nm in Fig. 4(b)]
and conventional synchronizations [for d = 8, 10, 44 nm in
Fig. 4(a) and d = 2, 8 nm in Fig. 4(b)] can be clearly iden-
tified. Interestingly, a periodically oscillating φ2(t ) − φ1(t )
with an amplitude of 60◦ appears at d = 22 nm in the case
in which two STNOs are coupled by both dipolar field and the
spin waves due to the YIG film. This is exactly the dancing
synchronization discussed earlier. Without the spin waves,
such a synchronization was not observed [Fig. 4(b)]. There-
fore, results in Fig. 4 demonstrate not only that the coupling
distance between two STNOs by spin waves becomes much
longer (44 nm) than that (8 nm) by the dipolar field but also
that it can induce a different type of synchronization. Below,
we will examine this type of synchronization more closely.

C. Dancing synchronization

For the dancing synchronization at d = 22 nm and un-
der current density of 1.435 × 107 A/cm2, we plot the time
evolutions of m1x(t ) (blue curve) and m2x(t ) (red curve), x
components of the average magnetization of the free layer
in the left and right STNOs, respectively, in Fig. 5(a). The
two curves are periodic with the same period but have dif-
ferent shapes, i.e., mαx(t ) = mαx(t + nT ) (α = 1, 2), where
T is the period and n is an arbitrary integer. For example,
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FIG. 5. (a) Time evolutions of m1x (t ) (blue curve) and m2x (t ) (red curve) in a dancing synchronization: m1x (t ) and m2x (t ) show fast and
slow motions, respectively (in nanoseconds). The relative phase of the red and blue curves varies with a much longer common period. (b) Time
evolution of the phase difference in the dancing synchronization. The common long period is about 2 ns, much longer than a 0.1 ns oscillation.
(c)–(e) Phase trajectories φ2(φ1) of two STNOs on the φ1φ2 torus (φ1 for the large circle and φ2 for the smaller one) under a current density
of 1.435 × 107 A/cm2; (c) is for a conventional in-phase synchronization when the distance is 10 nm, (d) is for the dancing synchronization
in which φ2(φ1) returns to its starting point after 19 turns when the distance is 22 nm, and (e) is for a nonsynchronized state in which φ2(φ1)
never closes when the distance is 70 nm. (f)–(h) �n = φ2(φ1 = π ) is the value of φ2 in the Poincaré maps. (f)–(h) are, respectively, for �n vs
�n+1, �n vs �n+18, and �n vs �n+19.

within one common period, both m1x(t ) and m2x(t ) oscillate
19 times with different amplitudes before returning to their
initial values. This phenomenon is different from the con-
ventional in-phase synchronization, where time evolutions of
m1x(t ) and m2x(t ) either overlap completely with each other
or differ by a fixed lag. Figure 5(b) plots the time evolu-
tion of the phase difference φ2(t ) − φ1(t ) of the two STNOs.
Clearly, φ2(t ) − φ1(t ) oscillates periodically with an ampli-
tude of about π/3 and a period of 2 ns. This is different from
all known synchronizations where φ2(t ) − φ1(t ) is a constant.
Because of this periodical variation of the relative phase of
the two STNOs that is reminiscent of two partners dancing in
rhythm with different arm movements, we term this observed
synchronization dancing synchronization.

To further prove the dancing synchronization in Fig. 5(a),
we plot trajectory φ2(φ1) on the φ1φ2 torus, as shown in
Figs. 5(c)–5(e). In a conventional synchronization where
φ2(t ) − φ1(t ) = const, φ2(t ) and φ1(t ) change by 2π simul-
taneously, so that φ2(φ1) is a simple one-turn closed curve
as shown in Fig. 5(c). This is the case when the distance
between the two STNOs is 10 nm under a current density of
1.435 × 107 A/cm2. The case of d = 22 nm at the same cur-
rent density is fundamentally different, as shown in Fig. 5(b).
φ2(t ) − φ1(t ) is not constant and varies periodically with a
longer period. The trajectory is still a closed curve, as shown
in Fig. 5(d), which displays data in Fig. 5(a) as φ2(φ1) on
the φ1φ2 torus. φ2(φ1) returns to its starting point after 19
turns. If φ1(t ) and φ2(t ) either are not periodic or do not have
a common period, the trajectory will not be a closed curve
and will fill up the φ1φ2 torus, as shown in Fig. 5(e), which
illustrates the motion of the two STNOs for d = 70 nm and
under a current density of 1.435 × 107 A/cm2.

One can further confirm the dancing synchronization of
two STNOs in Fig. 5(a) via the Poincaré maps. In the map, �n

is defined as angle φ2 modulo 2π when φ1 = (2n − 1)π , i.e.,
{�n = φ2(φ1 = (2n − 1)π ) mod 2π |n = 1, 2, . . .}. �n can be

grouped into various sets such as {(�n,�n+1)|n = 1, 2, . . .},
{(�n,�n+18)|n = 1, 2, . . .}, and {(�n,�n+19)|n = 1, 2, . . .}.
These three sets are plotted in Figs. 5(f)–5(h), where the x
axis is for �n and the y axis is for �n+N , n = 1, 2, 3, . . . .
{(�n,�n+N )|n = 1, 2, . . .} fall onto the line of �n+N = �n if
φ1 and φ2 have a common period of N turns. This is exactly
the case here with N = 19, as shown in Fig. 5(h). As a com-
parison, sets with N = 1 and 18 are off the straight line, as
shown in Figs. 5(f) and 5(g).

D. Robustness of the dancing synchronization

The observed dancing synchronization is very robust and
can exist in a finite region in the parameter space. For ex-
ample, Figs. 6(a1)–6(a5) show the time evolution of φ2(t ) −
φ1(t ) for various d at a fixed current density of J = 1.435 ×
107 A/cm2 while all other parameters remain the same as
those in Fig. 5. Clearly, the dancing synchronization, fea-
tured by the periodic variation of φ2(t ) − φ1(t ), occurs in
the window of d = 18–23 nm. Similarly, we observe the
dancing synchronization at fixed d = 22 nm in the current
density window of J = 1.41–1.48 × 107 A/cm2 while all
other parameters remain the same as those in Fig. 5 in
Figs. 6(b1)–6(b5), whereas φ2(t ) − φ1(t ) in Figs. 6(b2)–6(b4)
vary periodically. Moreover, as shown in Fig. 6(c2) at a fixed
d = 22 nm, J = 1.435 × 107 A/cm2, the dancing synchro-
nization occurs when the magnetic anisotropy direction and
its magnitude vary. Interestingly, the dancing synchronization
exists even in the absence of the anisotropy, as shown in
Fig. 6(c1).

A natural question is whether the dancing synchronization
can still survive when the so-called fieldlike torque is included
in Eq. (1). The answer is yes, as shown in Fig. 7(a) for
d = 22 nm and under a current density of 1.45 × 107 A/cm2

with 45% fieldlike torque. The torque modifies slightly the
details of the synchronization. The dancing synchronization
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FIG. 6. Time evolution of phase differences for various distances d at a fixed charge current J = 1.435 × 107 A/cm2, for various charge
currents J at a fixed distance d = 22 nm, and for different conductions of the magnetic anisotropy at fixed d = 22 nm and J = 1.435 ×
107 A/cm2. All other parameters are the same as those used in Fig. 5.

is still observed even when an additional external magnetic
field up to 0.3 mT along the z axis is applied, as shown in
Fig. 7(b) for 0.1 mT. These results demonstrate the robustness
of the dancing synchronization against different parameters
and different types of torques.

The observed dancing synchronization is not a transient
process, which can be verified by a much longer micro-
magnetic simulation of 300 ns. In this simulation, we set
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FIG. 7. Time evolution of phase differences at a fixed distance
d = 22 nm and (a) under a current density of 1.45 × 107 A/cm2 with
45% fieldlike torque or (b) under an external perpendicular magnetic
field of 0.1 mT. All other parameters are the same as those in Fig. 5.

d = 22 nm and KY IG = 0 in order to show that the dancing
synchronization is robust against variation of spin waves that
glue two STNOs together. The rest of the model parameters
are the same as those in Fig. 5. As shown in Fig. 8, there is
no sign that the dancing synchronization changes to another
type of motion. Evolution of the phase difference between t =
290 ns and t = 300 ns is the same as that between t = 30 ns
and t = 40 ns and is very similar to Fig. 5(b) with KY IG �= 0.

(b)
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-φ
1
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)
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FIG. 8. (a) A 300 ns long evolution of phase differences at d =
22 nm and KY IG = 0 under current density of 1.435 × 107 A/cm2.
(b) Zoom of the evolutions in t = 30–40 ns (bottom axis and red
curve) and in t = 290–300 ns (top axis and blue curve). Two curves
overlap with each other, showing no sign of a transient motion.
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FIG. 9. Dancing synchronizations in a complex amplitude model and a Van der Pol model. (a)–(c) are the time evolution of complex
amplitudes, phase difference, and the Poincaré map in the complex amplitude model, respectively. (d)–(f) are the real-time trace of two
oscillators’ amplitudes, the time evolution of the phase difference, and the Poincaré map in the VdP model, respectively.

III. DANCING SYNCHRONIZATION IN TOY MODELS

Importantly, genuine physics phenomena should be univer-
sal. In order to demonstrate that the dancing synchronization
can also appear in well-known and well-studied popular mod-
els, we consider two coupled complex variable oscillators [11]
and two coupled Van der Pol oscillators. The two models
have been intensively studied by numerous people before. A
close examination of earlier studies shows that most people
use the simple linear reactive coupling (a function of only the
oscillator position) between two nonlinear oscillators. Indeed,
we did not observe the dancing synchronization with only
linear reactive or linear dissipative coupling (involving oscil-
lator velocities) like in previous studies. However, when two
nonlinear oscillators couple with each other both reactively
and dissipatively, dancing synchronization appears. Below, we
report our findings.

A. Dancing synchronization in coupled
complex variable oscillators

We first search dancing synchronization in the complex
variable oscillation model used by Matheny and coworkers
[11], who reported various fragmentation synchronizations.
The nonlinear dynamical equations for n complex variables
Aj (t ) ( j = 1, . . . , n) read

Ȧ j = λAj (1 − |Aj |) + i(ω jA j + α|Aj |2Aj )

+ iβ
n∑

k �= j

(Ak − Aj ) + γ

n∑
k �= j

Ak (1 − |Aj |), (2)

where α is the nodal nonlinearity that couples frequency
to amplitude, β measures the strength of reactive coupling
among a pair of oscillators, and γ is a nonlinear coupling.
Each complex variable Aj (t ) stands for an oscillator. The real
part of Aj (t ) represents a real variable which can be observed
in the oscillation. Equation (2) is often used to introduce the
concept of synchronization [1]. For STNOs, Aj (t ) can be m j .
The phase of each oscillator φ j (t ) is defined as the argument
of Aj . For γ = 0, the model has been used to describe various
nonlinear systems, including nanoelectromechanical systems
(NEMS) [11]. This model is sometimes called “a universal
model for self-sustained oscillations” in comparison to the
Kuramoto model [9] widely used to describe “phase synchro-
nization” of coupled oscillators or networks. In the Kuramoto
model, an oscillator is represented by only one real variable.

Various nonlinear phenomena such as self-sustained oscil-
lation and fragmentation synchronizations have been obtained
from Eq. (2) with γ = 0 [11], but not the dancing synchro-
nization. We show now that the dancing synchronization of
two complex variable oscillators can exist for certain γ �= 0.
The numerical solutions of Eq. (2) from the fourth-order
Runge-Kutta method are plotted in Figs. 9(a) and 9(b) for γ =
0.01, ω1 = 0.5 Hz, ω2 = 0.7 Hz, α = 0.59126, β = 0.056,
and λ = 0.01, with the initial conditions A1(0) = 2.51e0.16i

and A2(0) = 1.62e0.79i. Like in the STNO system, the am-
plitudes Re(A1) and Re(A2), as shown in Fig. 9(a), oscillate
with a long common period of 24.75 s. The phase difference
φ2(t ) − φ1(t ), as shown in Fig. 9(b), is not constant and varies
with the same synchronized period of 24.75 s with an ampli-
tude of 0.6π . Because all nonlinear dynamical systems have
gain and loss, the properties of attractors do not depend on the
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initial states. The dancing synchronization is also checked us-
ing the phase trajectory and the Poincaré map {�n = φ2(φ1 =
(2n − 1)π ) mod 2π |n = 1, 2, . . .}, and the phase trajectory
φ2(φ1) is closed after four turns on the φ1φ2 torus, as demon-
strated by the points {(�n,�n+4)|n = 1, 2, . . .} on the line
y = x in Fig. 9(c).

B. Dancing synchronization in two coupled
Van der Pol oscillators

We have also demonstrated the existence of the dancing
synchronization in two coupled Van der Pol (VdP) nonlinear
oscillators. The VdP equation is not only a popular model
for demonstrating the self-sustained oscillation in nonlinear
systems [45,46] but also realizable by RCL circuits with a
negative differential resistor. The standard VdP equation is

ẍi + μ
(
x2

i − Ai
)
ẋi + ω2

i xi = − fi, j �=i, (3)

where i, j = 1, 2 label two oscillators and μ > 0 is a pa-
rameter measuring energy gain (x2

i < Ai) and energy loss
(x2

i > Ai). Ai > 0 specifies the size of the energy gain region
and is roughly the oscillation amplitude. ωi and fi j describe,
respectively, the oscillatory frequency and the coupling be-
tween oscillators i and j. Coupled VdP oscillators have been
intensively studied before with either reactive or dissipative
coupling [47,48]. Interestingly, only conventional synchro-
nizations were reported in all earlier studies of coupled VdP
oscillators. Here we show that the dancing synchronization
can appear in coupled VdP oscillators with both reactive and
dissipative couplings,

fi j = α(x j − xi ) + ( j − i)β
√|xix j + ẋiẋ j − 1|, (4)

where the first term is a reactive coupling and the second one
is dissipative. Figure 9(d) shows the numerical solutions of
Eq. (3) from the fourth-order Runge-Kutta method for μ =
1, A1 = A2 = 0.5, ω1 = 1 Hz, ω2 = 0.98 Hz, α = 0.12, β =
0.30. The final self-sustained oscillations shown in Fig. 9(d)
do not depend on the initial conditions. Two oscillators have
distinguished appearances but share a common long period of
13.19 s. To see clearly that this is a dancing synchronization,
we define

φ j (t ) =
∫ t

0

ẋ j (τ )˙̇ ˙x j (τ ) − ẍ j (τ )2

ẋ j (τ )2 − ẍ j (τ )2
dτ, (5)

which is the total winding angle of (x(t ), ẋ) in the xẋ phase
plane. φ2 − φ1 varies periodically with an amplitude of around
0.2π within the common long period of 13.19 s, as plotted in
Fig. 9(e). Again, the dancing synchronization is checked using
the phase trajectory and the Poincaré map {�n = φ2(φ1 =
(2n − 1)π ) mod 2π |n = 1, 2, . . .}, and the phase trajectory
φ2(φ1) is closed after two turns on the φ1φ2 torus, as demon-
strated by the points {(�n,�n+2)|n = 1, 2, . . .} on line y = x
in Fig. 9(f).

C. Discussion

Simple toy models allow one to test key ingredients for
a new phenomenon, which is the case here. In order to
demonstrate the importance of nonlinear coupling between
two oscillators, we set γ = 0 for model (2) and β = 0
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FIG. 10. Time evolution of two nonlinear oscillators for (a) the
complex amplitude model with γ = 0 and (b) the Van der Pol model
with β = 0.

for model (3). In both cases, we were not able to find
any trace of dancing synchronization within many trials.
Figure 10 shows what was typically observed with only con-
ventional synchronizations, where Fig. 10(a) is the result
of model (2) with γ = 0 and Fig. 10(b) is for model (3)
with β = 0 while all other parameters are the same as those
in Fig. 9 that show dancing synchronizations. Our studies
show the importance of nonlinear couplings for the dancing
synchronization.

The dancing synchronization in the toy models is also
robust against a certain degree of variation of parameters.
As an example, in model (2) when the intrinsic frequency
of the second oscillator and α change from 0.7 to 0.8 and
from 0.59126 to 0.55207, respectively, dancing synchroniza-
tion also appears, as shown in Figs. 11(a1)–11(a3), in which
the state returns to its starting point after moving around the
origin of the phase plane for five turns [Fig. 11(a3)]. Similarly,
if we change the intrinsic frequency of the second oscillator
from 0.7 to 0.9 and α from 0.59126 to 0.59445, dancing
synchronization is still there, as shown in Figs. 11(b1)–11(b3),
in which the state returns to its starting point after six turns
[Fig. 11(b3)].

A true natural phenomenon should tolerate thermal noise.
To demonstrate that our dancing synchronization is insensitive
to the thermal noise, we add a stochastic force to the original
equations; for example, the nonlinear dynamical equation of
the complex amplitude model becomes

Ȧ j = λAj (1 − |Aj |) + i(ω jA j + α|Aj |2Aj )

+ iβ
n∑

k �= j

(Ãk − Aj ) + γ

n∑
k �= j

Ãk (1 − |Aj |), (6)

and the Van der Pol model becomes

fi j = α (̃x j − xi ) + ( j − i)β
√|xĩx j + ẋiẋ j − 1|, (7)

where Ãk = Ak + aS(t ) and x̃ j = x j + aS(t ), where S(t ) is
a standard Gaussian stochastic process and a measures the
strength of random force. In simulations, an independent
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FIG. 11. Dancing synchronization of model (2) with (a) ω2 = 0.8 Hz, α = 0.55207 and (b) ω2 = 0.9 Hz, α = 0.59445. Panels from left to
right are the time evolution of the two oscillators, the corresponding phase difference, and the Poincaré map.

Gaussian-distributed random force of standard deviation σ =
1 is assigned in each step (�t = 4.7 × 10−3 s). We solved
equations numerically with a = 1 × 10−7 and a = 5 × 10−7.
The results of the complex amplitude model and the Van

der Pol model are displayed in Fig. 12. The Poincaré map
(collecting data from 3000 periods) is slightly dispersed for
both a. All return points fall around the line ϕn+4 = ϕn, which
sustains our statement on the robustness of the dancing

FIG. 12. Dancing synchronization of the complex amplitude model [model (2)] (a1)–(a3) for a = 1 × 10−7 and (c1)–(c3) for a = 5 × 10−7

and the Van der Pol model [model (3)] (b1)–(b3) for a = 1 × 10−7 and (d1)–(d3) for a = 5 × 10−7. (a1), (b1), (c1), and (d1) are the time
evolution of two oscillators. (a2), (b2), (c2), and (d2) are the time evolution of the phase difference. (a3), (b3), (c3), and (d3) are the Poincaré
map. The periodical oscillation of the phase difference and the Poincaré map demonstrate the dancing synchronization under the noise.
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synchronizations. The dancing synchronization of the Van de
Pol model is much more resilient than that of the complex
amplitude model, as shown in Figs. 12(b) and 12(d), with
a = 1 × 10−7 and a = 5 × 10−7, respectively.

IV. CONCLUSION

In summary, a type of synchronization, termed danc-
ing synchronization, was observed in two STNOs coupled
through spin waves and the static magnetic interaction. The
two STNOs oscillate with the same period, and their rela-
tive phase difference varies periodically with a common long
period, different from all known synchronizations in which
the relative phases of two nonlinear oscillators are fixed.
We further demonstrated that the dancing synchronization is
a general phenomenon that can also occur in the complex
variable oscillation model used by Matheny and coworkers

[11] and in two coupled Van der Pol oscillators, as long as
they are coupled reactively and dissipatively. The dancing
synchronization exists in a narrow parameter region between
nonsynchronization and in-phase synchronization of two non-
linear oscillators.
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