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� High performance sulfide treated

Pt/porous GaN gas sensors has

been developed.

� H2 gas sensor was working at room

temperature, selective, simple,

and low cost.

� Detection mechanism was inves-

tigated and supported by DFT

simulations.

� A bond strengthening when Pt and

S is adsorbed on porous GaN sur-

face along with H.

� Sulfide treatment improve signifi-

cantly H2 detection at room

temperature.
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High-performance chemiresistor gas sensor made of sulfide porous GaN decorated with Pt

nanoparticles, which shows tunable sensor response and enhanced sensitivity. The

fabricated gas sensors show detection of H2 down to 30 ppm at 23 �C after sulfide treatment

and Pt decorated porous GaN. The response time and recovery time were equal to 47 s and

113 s, respectively. Density functional theory simulations were used to support the

detection mechanism based on sulfide treatment. Adsorption energy calculations showed

that H adsorption energy is lowered by the simultaneous presence of S and Pt on the GaN

(0001) surface. The density of states (DOS) calculations revealed possibility of bond
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Surface functionalization
H2 sensor

DFT

High sensitivity
strengthening when Pt and S is adsorbed on GaN surface along with H, arising from the

hybridization of d and p orbitals of Pt and S with that of H 1s orbitals.

© 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

The capability to identify, detect rapidly, and monitor

different gases at low concentration for medical, industrial,

security and even domestic applications are highly desired

while working in dynamic mode. Among them, H2, H2S, and

C2H4 are common pollutant gases, that pose serious risk to

human health [1,2]. In this scenario, unified gas sensors that

have excellent selectivity, reliability [3] high sensitivity [4], fast

response, long-term stability, cost-effectiveness and low gas

workable concentrations are of top priority [5e8]. Further-

more, an ample gas sensing span is requisite [9] where the

fabrication of gas detectors for 10e1000 ppm of these gases is

of high stakes [10]. For automotive industries and aerospace

applications, gas detectors that can maneuver under highly

corrosive environments and at extreme temperatures are

mandatory [9,11,12]. Hence, monitoring and detecting gases

rapidly and effectively has become an urgent problem to be

solved. Variety of techniques have been used to build sensors

to detect and monitor these pollutants, including mass spec-

troscopy, gas chromatography [13,14] electrochemical bio-

sensors [15e19], optical methods [20e23] FTIR analysis [24,25],

piezoelectric sensors [22e26], and chemical sensors [27].

Recently, many sensors devices based on various semi-

conductors materials, e.g., GaP, GaN, GaAs, AlGaAs, InGaN,

InGaP, and GaN/AlGaN have been developed to produce H2 gas

sensors. I-Peing et al. fabricated a gas sensors based on Pt/

GaOx/GaN gas sensors with SR ¼ 1.03 � 105 under 1% H2 and

lowest detection of 1 ppm at 300 K are reported [28]. A Pd/NiO/

GaN based MOS diode was reported to detect 1% H2/air and

high sensing response of 8.1 � 103 under a forward voltage of

0, 25 V at 300 K [29]. In the last few years, porous GaN becomes

potentially a good candidate for gas sensor, owing to the direct

band gap of this semiconductor [30] and its excellent chemical

stability combined with porosity which enhances its specific

surface area [31,32]. Whereas, high porosity may increase

active surface area and hence the performance of the sensor

will improve too. To date, etching techniques have been used

to create porosity at the surface such as bottom up (dry)

etching which may damage the surface of GaN [33,34]. Hence,

top down (wet) etching is the best alternative as its low energy

process and it is limited to the specific surface area of semi-

conductor, which is further divided into chemical and elec-

trolytic etching [35e40]. Various techniques have been

appraised to improve the sensitivity of the etched device, such

as deposition of anti-reflection coating [41e44], gettering [45],

texturing [46], dry hydrogen passivation [47], aswell as coating

of silicon nitride on the surface of GaN [48]. Whereas,

passivation by removingmetal dross provides ample space for

incoming gas precipitationwhichmay enhance the sensitivity
[49]. Hence, passivation is final solution that can intensify

response as well as can help the device to withstand degra-

dation and insatiability due to oxidation. Numerous surface

passivation approaches have been studied using inorganic

and organic materials. Specifically, passivation through sul-

fide is strongly recommended for GaN, GaAs, and GaP due to

formation of strong covalent bond at their surfaces [50e55]. P.

Varadhan et al. addressed adverse effects of dangling bonds

and chemisorbed oxide and hydroxyl ion on the surface of

GaN nanowires, and demonstrated new strategy to erode

these surface states by using 1,2-ethanedithiol (EDT) [56].

Indeed, passivation through 1,2-ethanedithiol (EDT) electro-

lyte prevents the formation of hydroxide layer at the GaN

surface. Also, sensor performance can be enhanced through

incorporation of noble metal elements (Pt, Pd, Au, etc.) as

catalyst at the surface of the GaN [57]. These catalysts dras-

tically improve interaction of gases with the adsorbed oxygen

and hydrogen on the surface. It has been reported that Pt-

coated GaN nanowires exhibit 1.7e1.9% higher response

than without Pt upon exposure to H2 [58]. Kim et al. studied

room temperature GaN gas sensor based on Ga2Pd5 nanodots

and obtained enhanced sensitivity from 34% to 63% for the

detection of H2 gas [59]. Furthermore, Lim et al. found

enhanced H2 sensitivity and response at room temperature by

coating GaN nanowires with Pd nanoparticles [60]. However,

combining metal nanoparticles and passivation method to

enhance efficiency of the gas sensors based on porous GaN at

room temperature is not yet studied.

In this work, we report a facile technique to synthesize

porous GaN using metal electrochemical etching method

embedded with Pt nanoparticles and passivated with EDT

solution (1,2-ethanedithiol). This sulfur passivation in EDT

solution was carried out for the porous surface in order to

enhance the sensitivity of the sensor to detect H2 gas.

Furthermore, physical and chemical properties were investi-

gated before the fabrication of the gas sensor. The sensitivity

of chemiresistor based gas sensor was studied for H2, H2S and

C2H4 gases, at various temperatures and concentrations. The

selectivity, response time and recovery time were also stud-

ied. Additionally, we have also carried out first principles

based density functional theory (DFT) simulations to investi-

gate the detection mechanism based on sulfide treatment.
Materials and method

Synthesis of porous GaN, passivation and fabrication of gas
sensors

The 30 mm n-type GaN film grown on sapphire substrate used

in this study was purchased from Xim. Powerway Adv.
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Fig. 1 e (a) SEM images of porous GaN etched for 30 min

with scale bar of 1 mm. (b) XRD pattern of porous GaN. (c) PL

spectra of the as grown and porous GaN.
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Material Co Ltd. The synthesis of porous GaN was carried out

by metal electroless etching process in the solution of H2O2/

HF/CH3OH (2:1:2) for 30min, as reported in our previous works

[61e64]. Subsequently, EDT (99.99%, Sigma-Aldrich) solution

was used to treat porous GaN samples by immersion for 5min.

Finally, Pt nanoparticles with average radius of 5 nm were

deposited on porous GaN surface using an ultrahigh vacuum

chamber (Mantis Deposition Ltd.). After sulfide EDT treatment

and Pt nanoparticles deposition, electrical contacts of Pt/Ni

with 100 nm thickness were deposited through a hard mask

on the samples using a sputteringmachine. The fabricated gas

sensors of Pt/sulfide-porous GaN were tested under different

gases (H2S, C2H4, H2) inside a chamber by varying the con-

centration of gas and sample temperature while nitrogen gas

was used to clean the chamber after each gas flow. The

gaseous flow rates were controlled by using Bronkhors mass

flow meters while electrical responses of the device were

monitored by computer controlled by a Keithley (KI236) source

meter. The detection response was calculated as S ¼ Ra=Rg,

where Ra and Rg are the resistances of the gas sensor in air

and under gas, respectively.

Characterization of materials

Morphological investigation of porous GaN was carried out

with FEI’s scanning electron microscopy (SEM) (Magellan 400

FEG) operating at 5 keV beam energy. A Bruker system (D8

Avance) was used to perform X-ray measurements on porous

GaN. The photoluminescence (PL)measurementswere carried

out at room temperature using the Jobin Yvon LabRAMHR 800

UV system. The surface properties was investigated before

and after the treatment of the surface by EDT solution. For the

surface analysis, X-ray photoelectron spectroscopy (XPS)

measurements was achieved with radiation source energy of

hn ¼ 1486.8 eV (Al Ka radiation source under vacuum). A

284.8 eV C 1s peaks was used to calibrate the binding energy

and ‘CasaXPS’ software was used to analyses the data by

fitting peaks with Gaussian-Lorentzian function.

Computational details

To explain the observed experimental phenomena in more

detail, we modeled a two-dimensional (2D) GaN (0001) surface

which was used for the DFT analysis. Initially a GaN bulk cell

was optimized and the obtained a and c lattice parameters

were 3.25 �A and 5.28 �A, respectively. They were used to

initialize the dimensions of the 2D surface. The optimized a

and c lattice parameters of the 2D surface were 6.496 �A and

30 �A respectively, such that sufficient vacuum region was

included along the z orientation to make the interplay be-

tween the periodic depictions negligible. Computational

studied were carried by Vienna Ab initio Simulation Package

(VASP) with the plane wave pseudopotential code [65,66].

Spin-polarized approach was employed to describe the

generalized gradient approximation (GGA) and exchange in

correlation functional [67]. The pseudo potentials usedwere in

the projected augmented wave (PAW) framework [68]. To

ensure accuracy for the relaxation of atomic coordinates,

force and energy tolerances of 0.001 eV/�A and 1.E-6 eV,

respectively, were adopted. A kinetic energy cut-off of 400 eV
was used to expand the plane waves included in the basis set.

The Brillouin zone integration was carried on k-grid with

12 � 12 � 2 dimensions of Monkhorst Pack. The Hubbard U

parameters, U ¼ 6.7 eV and J ¼ 0.7 eV for Ga [69], in the

Dudarev’s approach [70], were implemented in VASP because

the electronic structure of GaN has a strong electronic corre-

lations of the 3d electrons and as known that GGA approxi-

mation cannot accurately describe it.
Results and discussion

Morphology and structural characterizations

Morphological studies were carried out using SEM and the

statistical information of surface porosity, mainly pore
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Fig. 2 e Comparison of XPS measurements of porous GaN and sulfide-treated porous GaN: (a, b) Ga 3s/S 2p region and (c, d) S

2s region of 30 min etched porous GaN.

Fig. 3 e (a) Optical microscopic structure of the fabricated gas sensor with electrode and detection region. (b) Room

temperature H2 sensing response ranging from 30 ppm to 300 ppm for Pt-porous GaN untreated and treated with sulfur.
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diameter distribution, was then extracted from a large num-

ber of SEM images by ImageJ software [71]. The typical image

for 30 min etched sample is shown in Fig. 1a. The evaluated

porosity was 58% and the mean pore diameter is around

250 nm. However, prolonged etching time may cause pores

collapsed, which aggregate and form long trenches.

To confirm the crystallinity, XRDwas carried out on porous

GaN as shown in Fig. 1c. Based on the XRD patterns, the

identification of the diffraction peaks indicates the hexagonal

wurtzite GaN indexed as JCPDS card no. 898624 with a

preferred orientation towards a dominant peak (002) at 34.5�,
although several high index planes such (100), (002), (101) and

(110) corresponding to 32.3�, 34.5�, 36.7�, and 57.8� were also
observed. Among these planes the high intensity peaks

correspond to (002) planes indicating the preferred orientation

of the grown sample. The reflection from plane (100) corre-

spond to high intensity with narrow peak show that surface is

crystallinewhile (002) and (101) planes have broad peaks.Most

of the peaks describe overall trend of the surface which depict

that surface is closer to amorphous behavior. The lattice

constants determined from diffraction peaks are a ¼ 3.189 �A

and c ¼ 5.189 �A. The photoluminescence (PL) spectrum shown

in Fig. 1c was measured on the as-grown GaN and after for-

mation of porous GaN. The result shows that after etching, a

red shift of the main PL peak from 362 nm to 363.2 nm was

observed, and a small PL peak start to build up at around
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Fig. 4 e Band diagram of the Pt/passivated porous GaN

under H2 gas.
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370 nmcompared to the bulk is expected, due to the relaxation

of compressive stress that modifies the bandgap [62,72].

The chemical composition of the pristine and EDT treated

Pt/porous GaN has been investigated by XPS at ambient tem-

perature shown in Fig. 2 in which every peak corresponds to

specific binding energy value that depict its abundance. A

comparative XPS studied for as grown sample and sulfur-

treated porous GaN are shown in Fig. 2aeb. Due to passiv-

ation, sulfur components were introduced as shown in XPS

peak at 163.4 eV corresponding to Ga 3s/S 2p while
Fig. 5 e (a) and (b) show the side views of the GaN (0001) surface

GaN (0001) surface with Pt, H and S atoms.
supplementary S 2p peak was accommodated using two (S

2p3/2, S 2p1/2) spin orbit coupled doublets. The sulfur contents

are explained by its adsorption at the surface as GaeSeC [73]

and CeSeH [74,75] components which is attributed at 162.5 eV

and 163.4 eV, respectively. After sulfur passivation of the

sample, the peak shown in Fig. 2d at ~227.3 eV confirm its

presence.While the peaks emerge at 226.7 eV and 227.7 eV are

assigned for GaeS [61,76] and CeSeH bonds [77], respectively,

corresponding to the S 2s core level. The split is ~1 eV. The

peaks positions indicate that the film consists mainly of these

above-mentioned bonds. The Pt nanoparticles traces were

measured with low concentration near the detection limit of

the equipment (Fig. S1 of the supplementary material).

H2 sensing properties and detection mechanism

The gas sensor devices shown in Fig. 3a were fabricated using

active area composed of Pt/sulfide-porous GaN placed be-

tween two electrical contact (Pt/Ni) separated by 1 mm gap.

The response of the gas sensor of porous GaN with Pt nano-

particles at room temperature before and after treatment with

sulfur is depicted in Fig. 3b. The sensor exhibits a repeatable

response towards H2 gas, which varies from 40 to 59% prior to

passivation at different gas concentrations such as

30e300 ppm. However, after passivation, the sensor response

enhanced up to 65% at 30 ppm of H2, such significant response

for lower concentration is attributed sulfurization of the

sample. Moreover, Fig. 3b shows that the response of
with and without the adsorbents. (c) shows the top view of
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Fig. 6 e The density of states of pristine GaN (0001) surface.
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untreated sample is saturated at 130 ppm of H2 concentration.

At the porous surface, this could be ascribed to the immersion

of the adsorbed H2 atoms, which may lead to surround the

whole porous surface and hence hinder further adsorption

and interaction of the gas with surface. The response of the

sensor after sulfurization is remarkably improved by

increasing the concentration of H2 at room temperature. In

our case, the detection of H2 can be done by two methods, i)

using Pt nanoparticles for porous GaN and ii) sulfide passiv-

ation of porous GaN with Pt nanoparticles. The surface of the

Pt nanoparticles and the interfaces between the Pt nano-

particles and the porous GaN are crucial for the detection of

H2, since the reactions mainly occur there. When Pt NPs are

exposed to H2, the adsorption of hydrogenmolecules onto the

Pt surface will dissociate the molecules into Hþ (protons) due

to the catalytic effect of Pt following this reaction:

H2����!Pt
2Hþ þ 2e� (1)

As the ionic radius of Hþ is much smaller than that of the Pt

atoms, the Hþ can freely diffuse in the Pt lattice at room

temperature and eventually captured by the N3þ ions at the

interface of Pt nanoparticles and porous-GaN. Consequently, a

dipole layer induced by H is created at the Pt/porous-GaN

interface. The hydrogen sensitivity comes from the dipole

layer, which significantly influences the band structure of

porous-GaN [78]. However, the XPS measurements after sul-

fide treatment show the presence of bonding of GaeS on the

surface of porous GaN, which is favorable to detect hydrogen.
Table 1 e The adsorption energy for the GaN (0001)
surface for Pt, S, H and their various combinations.

Configuration Adsorption energy (eV)

GaNþS �1.28

GaNþPt �1.20

GaNþH 0.61

GaNþPtþH �3.65

GaNþSþH �2.62

GaNþPtþS �4.54

GaNþPtþSþH �5.62
For Pt/sulfide-porous GaN device will detect hydrogen based

on the presence of sulfide and Pt nanoparticles on porous GaN

surface.

Indeed, catalytic nature of Pt will dissociate hydrogen

molecules into its constituent’s i.e. hydrogen atoms and these

resultant atoms diffused at the Pt/passivated porous GaN

layer. At the interface, a dipole layer will be formed due to

insertion of hydrogen atoms which ultimately reduce the

barrier height as shown in Fig. 4. This reaction will elevate the

fermi level and hence enhanced the conductivity of the

passivated layer [79]. Consequently, due to this catalytic re-

action, the passivated barrier 4B,air between Pt and passivated

porous GaN was smoothly narrowed to 4B,H2, this reduces the

resistance and hence electronic barriers between the bands.

The presence of Pt nanoparticles will combine with gallium

and sulfide which detect hydrogen through the hydro sulfu-

rization that is catalyzed by metal sulfides [76]. Therefore, Pt/

passivated porous GaN sensor exhibits significant response

for H2 than the Pt/porous GaN sensor because of the enhanced

charge extraction which occurred due to reduction of charge

recombination rate.
DFT calculations and gases detections

To understand the H2 detection mechanism, DFT based first

principal calculations have been performed. The two-

dimensional (2D) GaN (0001) surface was optimized (see

Fig. 5a) and the obtained intra and inter GaeN bond lengths

were 1.94 �A and 2.15 �A respectively, which is comparable to

that obtained in previous studies using DFT- PBEmethods [80].

Further the elements Pt, S and H were adsorbed on the GaN

surface (see Fig. 5bec) and optimization was carried out.

During optimization, the layers in the bottom were fixed and

the relaxation of the surface layers were allowed.

To check the characteristics of adsorption of metal atoms

and hydrogen, we have calculated the adsorption energies by

using Eqs. (2) and (3), respectively.

EadsðMÞ¼EGaN_M � EGaN � mM (2)

EadsðHÞ¼EGaN_ðMþHÞ �EGaN_M � mH (3)

where EGaN_M and EGaN in Eq. (2) represent the total energy of

the GaN surface with metal atom (M) adsorbed on it and that

of pristine surface respectively. The chemical potential

denoted as m is the single point energy of the respective

element. Similarly, for (3), the first and second terms on the

RHS signify the total energy of the GaN surface with and

without H adsorbed on it. The adsorption energies are shown

in Table 1.

The H adsorption energy on the pristine GaN surface is

positive, but lower in magnitude. While, the negative

adsorption energies for S and Pt, indicate that S and Pt can be

preferably adsorbed on the GaN (0001) surface, which is sup-

porting our experimental findings. Considering the adsorption

characteristics of Pt and S, Pt is slightly more preferred. This

also helps in lowering the energy while H is adsorbed in

presence of Pt. The simultaneous presence of Pt and S helps in

further reducing the H adsorption energy and hence will be

more suitable for gas sensing.
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Fig. 7 e The orbital resolved DOS of GaN (0001) surface with Pt and H adsorption.
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We have carried out electronic structure analysis to

discern the orbital resolved contributions. Initially the density

of states (DOS) of pristine GaN (0001) surface is calculated and

plotted in Fig. 6.

The appearance of surface states owing to the dangling

bonds can be noticed in the DOS and the occupied levels are

consisting of the N-2p orbitals, while the s and p orbitals of Ga
Fig. 8 e The orbital resolved DOS of GaN (00
also contribute to a smaller extent. However, the unoccupied

levels have almost equal contribution of the Ga and N atom

orbitals.We also calculated the electronic structure of the GaN

surface with adsorbed Pt, S and H atoms to understand the

energetic preferences obtained in adsorption energy calcula-

tions. The orbital and atom resolved contributions of DOS

plotted for the GaN (0001) surface with Pt and H as well as
01) surface with Pt, S and H adsorption.
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Fig. 9 e Sensor responses for H2, C2H4 and H2S gases at

23 �C.

Fig. 10 e (a) Sulfide treated Pt-porous GaN sensor response for

Sensor responses for the H2, H2S, and C2H4 gasses at 23 �C for
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(PtþS) alongwith H are presented in Figs. 7 and 8, respectively.

From Fig. 7, it can be seen that, the DOS contributed by the Pt

and N orbitals at the same energy interval as that of the H 1s

orbitals can hybridize and strengthen the bonds, which

further leads to the reduction in adsorption energies for the

GaNþPtþH system.While for the GaN surfacewith both Pt and

S coexisting with H, the d and p orbitals of Pt and Scan hy-

bridize with the H 1s orbitals, rendering even stronger

bonding. The band structures of pristine GaN (0001) surface

and that with adsorption of H in presence of Pt and S are

presented in S2 and S3 (Supporting Information), showing

changes in the conducting properties and the conductivity

before and after hydrogen detection.

Fig. 9 exhibits room temperature response of the sensor

towards three different gasses H2, H2S, and C2H4 respectively.

The figure shows that the response of the sensor increases

steeply for H2 as its concentration increases from 30 to

300 ppm. The fabricated device exhibit significant response

towards H2 at 30 ppm while second highest response corre-

sponds to C2H4 due to the passivation of the sensor’s active

region. Though, the sensor’s response for C2H4 gas is not

uniform and independent of the gas concentration. On the

other hand, the sensor’s response towards H2S gas is less than

its response towards H2 gas and it has repeatable behavior.

The reason behind that could be ascribed to the filling of the

porous surface with adsorbed H2S atoms that might cease

additional adsorption and interplay of the gas molecules in

the active region.

Fig. 10 demonstrates the sensing response versus time of

sulfur treated porous GaN with Pt nanoparticles sensors for
different temperatures (a) for H2, (b) C2H4, and (c) H2S. (d)

30 ppm and 200 ppm.
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Fig. 11 e (a) Selectivity measurement of the GaN gas sensor towards H2, H2S and C2H4 for 50 ppm concentration gas for

10 min time. (b) Real and recovery times gas sensor response for 200 ppm H2 gas at 23 �C.
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different concentrations of H2, H2S, and C2H4 gases at tem-

peratures ranging from 25 �C to 60 �C. The response of the

sensor increases as the temperatures increase due to increase

in surface states for interactions [81]. At lower temperatures,

there is a lack of energy that support gaseous molecule to be

combinedwith the ionic species present at porous surface and

hence adsorbed. Increasing the temperature will boost the

sensitivity and will reach to the saturation stage when the

active region of the sensor cannot adsorb gas molecules

anymore [82e84]. The responses of the sensor towards H2 gas

was higher compared to those for H2S and C2H4 because the

small thermal energy due to low temperature is enough to

subdue the activation energy obstacle of the reaction between

hydrogen and sulfur [10,85e87]. While the response of the

same sensor for H2S and C2H4 is lower correspond to the pa-

rameters such as availability of ionic species, activation en-

ergy barrier as well as reactive sites [10]. The response of

sensor at room temperature is depicted in bar chart graph of

Fig. 10d for 30 ppm and 200 ppm.

The fabricated sensor can detect broad range of gases. So,

the critical parameter to analyze is the selectivity through

which it can distinguish between different gases depending

upon their concentrations. The selectivity test at room tem-

perature is shown in Fig. 11a for H2, H2S and C2H4 gases at

50 ppm concentration for 10 min. The recorded sensor

response at 50 ppm of H2, H2S, and C2H4 gasses are 2.00, 1.10,

and 1.00, respectively. Again, the sensor’s sensitivity is high

towards H2 and low for C2H4 gas.

There results show a sharp rise in the response during H2

gas detection which may correspond to dangling bond

recombination, while it shows a sudden rise in the response

after switching the gas flow from H2 to H2S. Moreover, the

response toward H2S become smooth after a short interval of

time and continues for 10 min. Finally, the sensor shows a

weak response towards C2H4 gas at constant temperature and

concentration. The response time is an important variable to

be investigated and presented in Fig. 11b. The result reveals a

rapid response time of 47 s and longer recovery time of 130 s

for 200 ppm of H2 gas. Compared to Pt/sulfide porous GaN
based gas sensor, Chen et al. used GaOx passivation layer for

GaN gas sensor and they achieve 13.3 s and 23.6 s for response

and recovery times, respectively, however it’s was measured

for 10,000 ppm H2 concentration [88].
Conclusions

In summary, we fabricatedH2, H2S, and C2H4 gas sensor device

based on sulfide passivated porous GaN decorated with Pt

nanoparticles. The fabricated device exhibit significant

selectivity and sensitivity towards different gases such H2,

H2S, and C2H4. Most significant performance of the gas sensor

device is at room temperature, it can detect 30 ppm of H2. In

addition, Pt/sulfide porous GaN based gas sensor is also suit-

able for the detection of H2S and C2H4 simultaneously at high

temperature. The superior performance of the Pt/sulfide -GaN

gas sensor is explained by DFT, for which the lowest H

adsorption energy is obtained. The density of states calcula-

tions showed that there exists possibility of enhanced hy-

bridization between the d and p orbitals of Pt and S with 1s

orbitals of H, which may lead to the reduction in adsorption

energy that subsequently leads to better H sensing properties.

Moreover, the detection mechanism of H2 gas at room tem-

perature was investigated in detail. Selectivity response for

the three gases were evaluated at 200 ppm, and a response

time of 47 s have observed for H2 gas whichmay correspond to

disassociation and recombination time of bonding at room

temperature. Our results demonstrate that environmental

monitoring sensor devices can be fabricated from Pt/sulfide

porous GaN, which can be promising for H2 detection and very

powerful in the future for smart city and home applications.
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