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One of the recent surprising discoveries is the crystal-axis-dependent anisotropic magnetoresistance (CAMR)
that depends on two magnetization components perpendicular to the current differently, in contrast to the
conventional anisotropic magnetoresistance that predicts no change in resistance when the magnetization
varies in the plane perpendicular to the current. Using density functional theory and Boltzmann transport
equation calculations for bcc Fe, hcp Co, and bcc FeCo alloys, we show that CAMR can be accounted for by the
magnetization-dependent spin-orbit interactions (SOI): Magnetization-dependent SOI modifies electron energy
bands that, in turn, changes resistance. A phenomenological model reveals the intrinsic connection between SOI
and order parameters. Such a mechanism is confirmed by the strong biaxial stain effect on CAMR. Our findings
provide an efficient way of searching and optimizing materials with large CAMR, important in the design of
high-performance spintronic devices.
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I. INTRODUCTION

The spin-dependent transport is a long-lasting topic in
condensed matter physics [1]. The electrical conductivity
of magnetic materials usually depends on its magnetization
structures, resulting in various types of galvanomagnetic ef-
fects including newly discovered anomalous spin-Hall and
its inverse effects [2]. Among them, anisotropic magnetore-
sistance (AMR) is a well-known phenomenon, which says
that the longitudinal electrical resistivity depends only on
the magnetization relative to the electric current [3–12]. The
AMR is attributed to the relativistic spin-orbit interactions
(SOI), which couple the electron orbital motions with their
spins, and have a universal form in magnetic polycrystals: the
change of longitudinal resistivity (or resistance) �ρxx(α) fol-
lows �ρxx(α) = �ρ0

xxcos2α with α being the angle between
the magnetization and electric current [13].

Recently, an intrinsic crystal-axis-dependent anisotropic
magnetoresistance (CAMR) effect has been discovered in
FeCo alloy [14], where the electrical conductivity depends
not only on the angle between current and magnetization, but
also on the angle between the crystalline axis and magneti-
zation [the angle between magnetization and z axis when the
magnetization varies in the yz plane perpendicular to electric
current flows, defined as the x direction, as shown in Fig. 1(d)].
Based on symmetry argument [15] and tensor analysis [16],
a phenomenological magnetization dependence of electrical
conductivity/resistivity [17], which gives rise to an intrinsic
CAMR, was obtained. Nevertheless, microscopic mechanisms
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for the order-parameter-dependent CAMR are yet to be
explored.

In this Letter, we use the density functional theory (DFT)
and Boltzmann transport equations (BTE) on several magnetic
single crystals, including bcc Fe, hcp Co, and bcc FeCo al-
loys, to investigate the microscopic origin of CAMR. For an
electric current along [110] direction (denoted as x axis), we
consider the magnetization along [1̄10] (denoted as y axis) or
along [001] direction (denoted as z axis). Whether longitu-
dinal electronic resistance (ρxx ) of these crystals varies with
the magnetization direction in the yz plane or not depends on
whether the SOI is included. Our calculations demonstrate
that CAMR comes from the magnetization-dependent SOI.
SOI leads to the energy band splitting near the Fermi level
that, in turn, affects electronic transport. This intrinsic mech-
anism is confirmed by the strong biaxial strain dependence of
CAMR.

II. METHOD

Our ab initio calculations are performed by using
the QUANTUM ESPRESSO package based on the projector-
augmented wave (PAW) method and a plane-wave basis set
[18,19]. The exchange and correlation terms are described by
a generalized gradient approximation (GGA) in the scheme
of Perdew-Burke-Ernzerhof (PBE) parametrization, as im-
plemented in the PSLIBRARY [20]. The energy accuracy is
set as 1.0 × 10−8 Ry, and the energy cutoff is 180 Ry
in all calculations. In the self-consistent field calculations,
Monkhorst-Pack k meshes with a grid spacing of 0.025 Å−1

are adopted. Based on the DFT calculations, the maximally
localized Wannier functions (MLWFs) [21–23] are then con-
structed by using WANNIER90 code [24,25], we construct a set
of 18 MLWFs per atom using dxy, dxz, dyz, and sp3d2 orbitals
as first guesses.
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Based on the MLWFs, the electronic conductivity can be
calculated by employing the BTE method [26–29], where
the chemical potential μ and temperature T dependence of
electronic conductivity can be obtained by

σi j (μ, T ) = e2
∫ +∞

−∞
dε

(
−∂ f (ε, μ, T )

∂ε

)
�i j (ε), (1)

where f (ε, μ, T ) is the Fermi-Dirac distribution function

f (ε, μ, T ) = 1

e(ε−μ)/kBT + 1
(2)

and �i j (ε) is the transport distribution function tensor defined
as

�i j (ε) = 1

V

∑
n,k

vi(n, k)v j (n, k)τ (n, k)δ(ε − En,k ). (3)

The sum in the above formulas is over all the energy bands
(indexed by n) with all states k (including spin even if it is
not explicitly denoted). En,k is the energy level and vi(n, k)
is the ith component of group velocity of the nth band in
state k, δ is the Dirac’s δ function, V = Nk�c corresponds to
the total volume of the system, and τ (n, k) is the relaxation
time, which describes the average time interval between two
consecutive collisions and is typically a complicated function
of k and n. In our calculation, the relaxation time approxima-
tion is adopted [30,31], and the relaxation time is regarded as
a constant, which is set as τ (n, k) = 1.0 × 10−14 s according
to Ref. [32]. In addition, a dense k mesh of 200×200×200 is
employed to perform the Brillouin zone (BZ) integration for
the electronic conductivity calculation. More details can be
found in the Supplemental Material [33].

III. RESULT

We focus on the experimental setup in which the elec-
tric current is along [110] direction, and the electronic
conductivity σxx or resistivity ρxx = 1/σxx is calculated for
magnetization along [1̄10] and [001] direction, respectively.
The crystal structures of alloys and sample coordinates are
shown in Fig. 1. As shown in Fig. S1 in Supplemental Material
[33], the density of states (DOS) of Fe, Co, and FeCo all have
significant splitting in spin-up and spin-down electrons near
the Fermi level, which gives rise to sizable magnetic moments
of the three materials. The calculated magnetic moments
are 2.20μB/atom for bcc Fe and 1.62μB/atom for hcp Co,
respectively. Whereas, in bcc FeCo, the magnetic moments
are 2.53 μB/atom for Fe and 1.68 μB/atom for Co, respec-
tively (Table S1).

We first explore the influence of magnetization direction
on the electronic structures without a SOI. According to the
Boltzmann formula presented in Sec. II, σxx relates only to the
electron velocity along the x direction, which is the gradient
of the band energy along �-X direction (the electron velocity
can be evaluated as v = dE/h̄dk, where E represents energy,
k and h̄ are the wave vector and the reduced Planck con-
stant, respectively). Additional contributions from the wave
vectors (or k points) outside the �-X direction, which have
nonzero projection on �-X direction, also exist. Nevertheless,
the band structure variation along �-X direction is expected
to most directly reflect the change of σxx. As shown in
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FIG. 1. Atomic structures of magnetic crystals (a)–(c) and the
definition of angle β in the Cartesian coordinates (d). (a) bcc Fe
(110), (b) hcp Co (112̄0), (c) bcc FeCo alloy (110), the brown
and blue balls represent Fe and Co atoms, respectively. (d) Electric
current is along [110] direction defined as x axis. [1̄10] and [001] are
y and z axis, respectively. Magnetization M is in yz plane.

Figs. 2(a)–2(c), although the energy bands of spin-up and
spin-down electrons significantly split along the electric cur-
rent, they do not depend on the magnetization due to the
collinear magnetic structure and the absence of a SOI. Elec-
tronic conductivity σxx [Eqs. (1)–(3)] is a function of electron
velocity, Dirac’s δ function, and electron relaxation time,
where the first two quantities depend on the band structure
while the last one does not, in relaxation time approximation
(as discussed in Sec. II). Thus, the independence of band
structure on magnetization direction means that no intrinsic
CAMR exists in the absence of a SOI.

We discuss now the magnetization-dependent SOI, which
affects band structure. Figures 2(d)–2(f) show the energy
bands of different magnetizations with a SOI. It is clear that
the SOI induces band split in all three magnetic crystals.
Notably, the band split strongly depends on the magneti-
zation direction, and bands are different when it is along
[001] and [1̄10] directions. Particularly, the split becomes
prominent for the intersected bands around certain k points.
Since the change of band structure leads to the change of
electron velocity and thus σxx, this result shows that the
magnetization-dependent split of energy bands induced by the
SOI is responsible for the intrinsic CAMR. Band splitting
may not be the sole cause of CAMR and there may be other
mechanisms responsible for CAMR (yet to be explored).
However, in the BTE calculations, the band structure merely
determines the electronic conductance under the relaxation
time approximation [see Eqs. (1)–(3)]. Thus, these re-
sults show that the intrinsic CAMR originates from the
magnetization-dependent split of energy bands induced by
the SOI. Dominant band split occurs in certain energy range,
[0.15 eV, 0.35 eV] for bcc Fe (110) and bcc FeCo (110),
and [−0.40 eV, −0.25 eV] for hcp Co (112̄0) [marked by
the grey circles in Figs. 2(d)–2(f)], which depends on the

L020401-2



ANISOTROPIC MAGNETORESISTANCE DUE TO … PHYSICAL REVIEW B 108, L020401 (2023)

0.25

0.50

0.00

-0.25

-0.50
X

0.25

0.50

0.00

-0.25

-0.50
X

0.25

0.50

0.00

-0.25

-0.50
X

M//[110],up

M//[001],up

M//[110],dw

M//[001],dw

0.25

0.50

-0.25

-0.50
X

0.00

0.25

0.50

0.00

-0.25

-0.50
X

0.25

0.50

0.00

-0.25

-0.50
X

M // [001]

M // [110]

(a)

(d)

(c)

(f)

(b)

(e)

Fe Co

Fe Co FeCo

FeCo

FIG. 2. Calculated energy bands without/with the SOI for bcc
Fe (110), hcp Co (112̄0), and bcc FeCo (110) alloy when the mag-
netization is along [001] direction or [1̄10] direction, respectively.
(a)–(c) Energy bands of the spin projection when the magnetization
is along [001] direction and [1̄10] direction without the SOI. The
red and blue small squares are the energy bands of spin-up and
spin-down electrons with the magnetization along [001] direction,
respectively. The red and blue solid lines are the energy bands of
spin-up and spin-down electrons with the magnetization is along
[1̄10], respectively. The solid lines and small squares completely
coincide, showing the independence of energy bands on the magneti-
zation direction without the SOI. (d)–(f) Energy bands with the SOI.
Red and blue lines represent the energy bands of magnetization along
the [001] and [1̄10] directions, respectively. Note that the energy
bands of spin-up and spin-down electrons are not distinguished in
the SOI calculations. The split of energy bands induced by different
magnetization direction are indicated by the grey circles. The �-X
direction in the BZ corresponds to the x axis in the real space.

crystal structures. This feature indicates that the bcc and hcp
structures have distinct CAMR behaviors.

To confirm above analysis, we calculate the electrical re-
sistivity of the three magnetic crystals in the presence of
the SOI. Figures 3(a)–3(c) show how ρxx changes when the
Fermi level is tuned (relative to undoped crystal Fermi energy
EF ) while the magnetization aligns along [001] and [1̄10],
respectively. It is found that ρxx near EF for all three materials
are in the range of 11–15 μ� cm, agree well with the ex-
perimental values of around 10.8 μ� cm [14]. Moreover, ρxx

of different magnetization directions differs from each other
slightly, and the variations have obvious energy dependence
in all three magnetic crystals. Significant difference of ρxx for
magnetization along y and z axis occur concurrently with
sizable SOI induced band split. �ρxx = (ρ 1̄10

xx − ρ001
xx )/ρ001

xx ×
100% clearly reveals the phenomenon. ρ 1̄10

xx and ρ001
xx denote

the electrical resistivity when the magnetization are along
[1̄10] and [001], respectively. As shown in Fig. 3(d), the
maximum value of �ρxx in both bcc Fe (1.0%) and bcc FeCo
(1.6%) appears around 0.37 eV above EF , whereas �ρxx

becomes the maximum around 0.3 eV below EF for hcp Co
(1.6%). A common feature is that all the maximum value

FIG. 3. The Fermi-level dependences of resistivity for (a) bcc Fe
(110), (b) hcp Co (112̄0), and (c) bcc FeCo (110) alloy, when the
magnetization is along [001] (the red) and [1̄10] (the blue), respec-
tively. (d) The Fermi-level dependences of �ρxx of three alloys. The
black dashed lines in (b) and (d) indicate ρ 1̄10

xx = ρ001
xx .

of �ρxx is 1.0%–1.6%, indicating the robustness of CAMR
value, which hardly depends on the component of Fe/Co in
the FeCo alloy. The calculated �ρxx is in good agreement
with the experimental value (1.0%) [14], showing the reli-
ability of BTE method for the CAMR. The energy levels
with the maximum �ρxx locate exactly in the energy range
with the most significant band splits [Figs. 2(d)–2(f)]. These
results clearly show that the intrinsic CAMR originates from
magnetization-dependent split of energy bands induced by the
SOI.

We use FeCo to further explore the relationship between
the anisotropic magnetoresistance and strength of the SOI.
Figure 4(a) shows how ρxx of FeCo significantly varies with
the angle β. It can be well fitted by a sine function, which
exhibits a twofold symmetry. This result is in good agreement
with experimental observations in Ref. [14]. The β depen-
dence of the SOI strength can be obtained from averaging ESOI

[34] over the electronic states

ESOI = 1

c2

1

r

dV

dr
l · s, (4)

where c is the speed of light, r is the radial distance of the
electron from the center of its atom, V is the effective potential
on the electron, and l, s are orbital angular momentum and

FIG. 4. (a). Calculated ρxx of FeCo at EF − 0.5 eV as a function
of β, the red dot is the calculation, and the black solid line is the
result after fitting with sine function. (b). The variations of |ESOI | of
FeCo with β.
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spin operators, respectively. As shown in Fig. 4(b), |ESOI | is
also a sine function of β, similar to that of the ρxx. The feature
confirms that the SOI is responsible for the CAMR.

We additionally investigate the relationship between
the SOI and magnetocrystalline anisotropy. As shown
in Fig. S3 in Supplemental Material, the magnetization-
direction-dependent magnetic anisotropic energy (MAE) of
FeCo is zero without a SOI. The result indicates that the elec-
tron hopping can hardly be influenced by the magnetization.
Then we explore the variation of MAE with β under the SOI
effect. As shown in Fig. S3, the variation of MAE exhibits a
sine function on β, in agreement with the assertion that the
SOI is the origin of both intrinsic CAMR and the MAE in a
collinear magnetization magnetic material.

Furthermore, we calculate the magnetic moments without
(Table S1) and with (Table S2) the SOI. It is found that
similar to the results obtained without the SOI, the magnitude
of magnetic moments does not depend on the magnetization
directions in the presence of the SOI. This result excludes
the contribution from variation of magnitude of magnetic mo-
ments to CAMR in our studied system.

We consider now the intrinsic connection of the SOI to or-
der parameters such as the magnetization and crystalline axis.
According to the general form [35], the SOI of a conduction
electron can be expressed as

HSOI = h̄e

2mc2
(�σ × �∇U ) · �vc, (5)

where U is the electrical potential and �∇U corresponds to
effective electrical field, �σ is the spin, and �vc is the ve-
locity of conduction electrons influenced by the external
electrical field. Considering that the spin polarization of most
conduction electrons in a magnetic metal is parallel to the
magnetization direction �M, the magnetization-dependent SOI
for the conduction electrons can be further obtained

HM
SOI = αh̄e

2mc2
( �M × �∇U ) · �vc (6)

by defining �σ = α �M, where α is a coefficient. Equation (6)
works only for the conduction electrons with �σ// �M.

As discussed in the Supplemental Material of Ref. [36],
�∇U strongly depends on the spin-polarized charge den-
sity (SPCD) in the magnetic crystal. Considering that the
majority-spin (denoted as ↑) electrons are in charge of the
electronic conductivity, one can focus on SOI for the ↑
spin, where the effective electrical field can be expressed
as �∇U ↑(r) ∝ n↑(r) �∇n↑(r) with n↑(r) and �∇n↑(r) being the
SPCD and its gradient at position �r for the ↑ electrons, respec-
tively [36]. Hence, it is obvious that different �∇U ↑(r) values
would be obtained if n↑(r) and �∇n↑(r) are anisotropic, which
are true in general. Although bcc Fe is highly symmetric,
its n↑(r) [ �∇n↑(r)] along [1̄10] and [001] directions are still
distinct according to the symmetry analysis, which results
in ∇1̄10U

↑ �= ∇001U ↑. According to Eq. (6), the variation of
SOI′s strength is attributed by �M × �∇U when �vc is fixed,
where the strongest SOI corresponds to the case �M ⊥ �∇U .
Therefore, although the magnetization is perpendicular to
the electric current (along [110] direction) in both cases of
�M//[001] and �M//[1̄10], different SOI strength can be still

FIG. 5. (a) Resistivity of bcc Fe (110) corresponding to different
magnetization directions at strain of −2% and 2%. Red (blue) solid
and dashed lines represent the ρxx when the magnetization along the
[110] ([1̄10]) direction, and the strain is applied at 2% and −2%,
respectively. (b) �ρxx of Fe (110) varying with the position of Fermi
energy under different strains.

induced by the fact that ∇1̄10U
↑ �= ∇001U ↑. This mechanism

should be general and applicable to hcp Co, and bcc FeCo.
The above results clearly reveal the intrinsic correlation

among magnetization (corresponds to �M), crystalline axis
(corresponds to �∇U ), and external electrical field (corre-
sponds to �vc). The coupling between order parameters, i.e.,
magnetization and crystal axis, leads to the magnetization-
dependent SOI and thus CAMR. This mechanism is different
from the one in conventional AMR, which solely comes from
the coupling between magnetization and external electrical
field (or electric current) and ignores the crystalline-axis de-
pendence of �∇U [6,37,38].

To confirm above results, we further investigate the biaxi-
ally strain-dependent CAMR. The biaxial strain is expected
to change the anisotropy of SPCD and thus the difference
between ∇1̄10U

↑ �= ∇001U ↑, which results in significant vari-
ation of CAMR. Figure 5(a) shows the energy level (relative to
EF ) dependence of ρxx of bcc Fe with the magnetization along
[001] and [1̄10] at different strains, respectively. It is found
that the compressive and tensile strains have completely dif-
ferent effect on ρxx, which leads to the divergence of CAMR.
When a compressive strain (−2%) is applied, ρxx with mag-
netization along [1̄10] is significantly larger than that along
[001] in the whole energy region near EF . Whereas it has a
converse behavior when a tensile strain (2%) is applied. The
corresponding �ρxx is additionally shown in Fig. 5(b). As one
can see, strain can significantly enhance CAMR, the maxi-
mum |�ρxx| reaches 4.0 and 1.6 times larger than that without
strain (1.0%) under the compressive and tensile strains, re-
spectively. This result confirms the intrinsic coupling between
magnetization and crystalline lattice, which gives rise to the
magnetization-dependent SOI and thus CAMR.

Before conclusion, it should be pointed out that CAMR
originating from the coupling between interfacial field and
magnetization in bilayer materials has been recently proposed
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[39]. The present CAMR theory is for the homogeneous ma-
terials, not for bilayers.

IV. CONCLUSION

In summary, CAMR in Fe, Co, and FeCo alloy originates
from the magnetization-dependent SOI. Using the DFT cal-
culations and BTE, we show that the SOI splits intersecting
energy bands around the Fermi level. Different magnetization
direction gives rise to different SOIs that, in turn, lead to
different resistivity, or CAMR. This is an intrinsic CAMR.
SOI is essential in CAMR since the energy bands do not
depend on magnetization direction in the absence of the

SOI. A phenomenological model that reveals the relation-
ship between SOI and order parameters (magnetization and
crystalline lattice) is proposed and is confirmed by the strong
strain dependence of CAMR.
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