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An organic electrochemical transistor  
for multi-modal sensing, memory  
and processing

Shijie Wang1,5, Xi Chen2,5, Chao Zhao1, Yuxin Kong3, Baojun Lin1, Yongyi Wu    1, 
Zhaozhao Bi    1, Ziyi Xuan1, Tao Li    1, Yuxiang Li3, Wei Zhang    4, En Ma    4, 
Zhongrui Wang    2  & Wei Ma    1 

By integrating sensing, memory and processing functionalities, biological 
nervous systems are energy and area efficient. Emulating such capabilities 
in artificial systems is, however, challenging and is limited by the device 
heterogeneity of sensing and processing cores. Here we report an organic 
electrochemical transistor capable of sensing, memory and processing. 
The device has a vertical traverse architecture and a crystalline–amorphous 
channel that can be selectively doped by ions to enable two reconfigurable 
modes: a volatile receptor and a non-volatile synapse. As a volatile receptor, 
the device is capable of multi-modal sensing and is responsive to stimuli 
such as ions and light. As a non-volatile synapse, it is capable of 10-bit 
analogue states, low switching stochasticity and good state retention. We 
also show that the homogeneous integration of the devices could provide 
functions such as conditioned reflexes and could be used for real-time 
cardiac disease diagnoses via reservoir computing.

Traditional artificial intelligence (AI) hardware has an architecture in 
which sensing, information processing and memory are physically 
separated. This leads to large energy and time overheads due to the fre-
quent data shuttling between the separated hardware modules and the 
sequential analogue–digital conversion1–3. Biological nervous systems 
outperform artificial neural networks (NNs) based on conventional 
silicon hardware in terms of energy–area efficiency4,5. This efficiency is 
the result of the co-location of sensing, processing and memory func-
tionalities in biological nervous systems and is essential for supporting 
complicated behaviours such as conditioned reflexes. The development 
of biologically inspired hardware could, thus, provide more efficient 
AI, which could be of particular value in applications that are subject 
to tight power and form-factor constraints such as edge computing.

The development of biologically inspired hardware that fuses 
sensing, memory and processing is, however, challenging. This is due 

to the complexities of the building blocks of the biological nervous 
system, which includes the receptors in the peripheral nervous sys-
tem for sensing, and the synapses and neurons in the central nervous 
system for signal processing. Heterogeneous module integration 
has been used to create artificial olfactory6, tactus7 and gesture rec-
ognition8 applications. However, the sensors and processing cores 
in these systems are still physically separated and structurally dif-
ferent, impacting fabrication compatibility, integration density and 
conductance matching as the device dimensions are scaled down. 
Recent developments with in-sensor computing using a single device 
based on two-dimensional materials are promising9,10. However, such 
devices lack non-volatile memory for signal processing. Phase-change 
materials3,11 and redox memristors (resistive random-access memories 
(RRAMs))1,12 can be used for in-memory computing, but do not have 
sensing capabilities. High-performance devices for the homogeneous 
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not only be blocked by the surrounding crystallites but also be firmly 
trapped among the compact, ordered and bulky side chains. Steps 
should also be taken to prevent the counterions from compensating 
the trapped ions. Moreover, the reversed electric field has to be weak, 
which indicates the importance of a deep channel. Regarding the per-
formance of volatile OECTs, increasing the dimensions of crystalline 
domains may reduce the volume capacitance (C*) and ion mobility, 
making it difficult to capture faint signals such as electrophysical and 
thermal stimuli.

To achieve dual operation modes using a single OECT, we target 
the following features: a device architecture with large channel depth 
to flatten the electric field within the channel combined with a large 
depth/length (d/L) geometric ratio to compensate the loss of C* and ion 
mobility to achieve highly sensitive multi-modal perception; crystal-
lization control to ensure the ions are trapped inside the ordered and 
compact molecular chains or are blocked by the bulky crystallites, 
which ensures the ions can easily shuttle among the amorphous chains 
to achieve volatile behaviour; and gate electrode process control to 
prevent the counterions from compensating the trapped ions.

Vertical traverse architecture design
We create a vertical traverse OECT (v-OECT; Fig. 1b and Supplemen-
tary Fig. 1) architecture gated by a 1-ethyl-3-methylimidazolium 
bis(trifluoromethylsulfonyl)imide ([EMIM+][TFSI−]):PVDF-HFP ion 
gel or aqueous solution, with a naturally formed crossbar structure. The 
channel length L of our v-OECT ranges from 40 to 80 nm, as determined 
by the film thickness, whereas the channel thickness d is 100 μm, which 
yields a high d/L ratio of around 2,000, and can offer a high amplifying 
capability in the volatile mode. More importantly, the large d/L ratio 
leads to smaller electric potential gradients along the d direction, which 
prevents the trapped ions from drifting out of the channel after the gate 
voltages are removed, as corroborated by the non-volatile performance 
of p-OECTs with different channel thicknesses (Supplementary Fig. 7).

Figure 1g shows that for a p-OECT with an ultrathick channel 
(~2 μm), the relative quantity of F− (the characteristic element of [TFSI−]) 
in the bulk channel can be higher than at the electrolyte–channel inter-
face. This suggests that only a small number of anions travel back to 
the electrolyte after the gate voltage is withdrawn. This leaves a narrow 
neutral interface and the majority of anions are still confined inside or 
are blocked by the bulky crystallites (domain size of ~30 nm, as evalu-
ated from the cryogenic electron microscopy (cryo-EM) imaging and 
grazing-incidence wide-angle X-ray scattering (GIWAXS) data; Fig. 1c 
and Supplementary Figs. 4–6), resulting in the non-volatile behaviour.

Crystallization and electrode process control
We studied the effect of channel crystallinity on the volatile and 
non-volatile behaviour of v-OECT by tracing the fingerprint of ions 
using in operando ultraviolet–visible (UV–vis) absorption spectra 
(Supplementary Figs. 2 and 3) and synchrotron radiation X-ray scatter-
ing27,28. The measurement setup is shown in Fig. 1e (inset). The OMIEC 
(PTBT-p) films were annealed at different temperatures to tune the 

hardware implementation of artificial biological nervous systems are, 
thus, still unavailable13.

Solution-processed organic electrochemical transistors (OECTs), 
which are based on mixed ionic–electronic conductor (OMIEC) compo-
nents and ion-mediated mechanisms, can operate in wet environments 
and with low power consumption. These devices have been shown to 
have either sensing or analogue memory14 capabilities similar to bio-
logical nerve cells. OECTs typically perform well in sensing applications 
that target certain types of signal such as chemical15,16 and electrophysi-
cal17,18 stimuli. But multi-modal sensing capabilities—which emulate 
biological multi-modal receptors such as TRPV1—remain limited19. 
Moreover, to achieve faster response times, the injected ions need to 
be able to freely diffuse back to the electrolyte and reinstate the chan-
nel to its initial state. This makes it difficult to implement non-volatile 
conductance modulation in the same device. By confining the ionic 
drift through enforced gate-channel open-circuit, non-volatile OECTs 
have been demonstrated with more than 500 analogue states and 
100 s state retention20–23. However, such open-circuit conditions can 
only be met when heterogeneous devices, such as conductive bridge 
memories, are integrated with the OECTs (Supplementary Table 1). 
Combining reconfigurable volatile and non-volatile behaviour in an 
OECT that could be homogeneously integrated into hardware that 
can sense multiple stimuli and perform memory and processing func-
tions (Fig. 1a) is challenging because of the contradictory ion kinetics 
required for volatile and non-volatile OECT behaviour.

In this Article, we report an OECT that can provide sensing, mem-
ory and processing functions. The approach uses a vertical traverse 
architecture and electrode process, together with a crystalline–amor-
phous channel that can be selectively doped by ions to enable recon-
figurable operation as a volatile receptor or a non-volatile synapse. As 
a receptor, the flexible device is capable of multi-modal sensing, and 
we use it to sense ion concentration changes in plants and record the 
electrocardiogram (ECG) signals, as well as for temperature sensations, 
gustation and artificial vision. As a non-volatile synapse, we show that 
it can offer 1,024 (10-bit) distinct states, wide dynamic range and state 
retention of more than 10,000 s. Homogeneous integration of such 
devices enables spike-timing-dependent plasticity (STDP) for spiking 
neural network (SNN) applications and conditioned reflex behaviour. 
We also explore, via simulations, the potential of the integrated devices 
to be used in real-time cardiac disease diagnoses using reservoir  
computing (RC).

Design strategies for dual-mode OECT
Typically, non-volatile OECTs are achieved by compensating the coun-
terions in electrolyte, or by increasing the hopping energy barrier of 
ions through bonding effects or channel microstructure control24. 
However, for these devices, the electric field between the channel and 
gate reverses when the gate voltage is removed, which yields a driving 
force that results in the ions drifting out of the channel when extra 
devices are absent25,26. To realize true non-volatility, the energy barrier 
has to be large enough to prevent ion diffusion. Ideally, the ions should 

Fig. 1 | Design of the mode-switchable cv-OECT. a, Comparison between the 
biological nervous system and cv-OECT-based artificial nervous system, where 
cv-OECT can act as both volatile receptor and non-volatile synapse. Optical 
micrographs display the top view of a v-OECT (scale bar, 100 μm). b, Device 
architecture of v-OECT; the two dashed boxes show the ion contribution in the 
volatile/non-volatile mode and the chemical structure of PTBT-p, respectively.  
c, Cryo-EM images of the 200 °C-thermal annealed (TA) and as-cast PTBT-p films. 
d, Transfer curves of cv-OECT with polarizable/non-polarizable gate electrode. 
e, Normalized 0–1 absorbance as a function of doping potential; the inset shows 
the setup for UV–vis measurement. Stages I and II correspond to the doping 
of amorphous and crystalline regions, respectively. f, Time-resolved UV–vis 
spectra of channels correspond well with the device performance. g, XPS spectra 
of as-cast and annealed p-OECT channels doped at LGP and HGP. The pink and 

blue lines are the signals from [TFSI−] before and after 30 nm etching. h, One-
dimensional GIWAXS profile of the annealed film samples. Before measurement, 
the samples were doped at LGP or HGP and then grounded (Methods). Reversible 
displacement of the (100) peak between the high/low resistance state (HRS/
LRS) suggests that the anions firmly embed among the glycol side chains in the 
crystalline region. i, Schematic explaining the mode-switching mechanism. 
The special channel dimensions and crystallization provide a high-barrier eVb 
between the two ionic states (1 and 2), resulting in a non-volatile behaviour. Vb 
denotes the voltage bias that drives the ions to overcome the barrier. LGP can 
only inject ions into the amorphous regions and lead to volatile behaviour. 
When the non-polarizable gate was used, the counterions cannot be reduced on 
the gate and thus they migrate into and neutralize the channel because of the 
reversed electric field, making the device volatile.
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crystallinity (Fig. 1c and Supplementary Figs. 4 and 5). Figure 1e and 
Supplementary Fig. 2 show that the normalized 0–1 absorption peaks 
versus doping potential has two different slopes, which we proposed 
correspond to anion doping in the amorphous (stage I) and crystal-
line (stage II) regions, respectively, as they may reflect two different 
C* values (Supplementary Text). The breaking point between the two 
stages appears earlier with stronger absorbance and correlates with 

an enhancement in crystallinity and with an increasing crystal ratio, 
and results in a wider memory window (Supplementary Figs. 4 and 5). 
For both as-cast films and films annealed at 200 °C, [TFSI−] can p dope 
the OMIEC under a high-gate potential (HGP) of −1.5 V, as indicated by 
the disappearance of the 0–1 absorption peak and emerged polaron 
signals (Fig. 1f and Supplementary Fig. 3). However, when the gate is 
grounded, the absorption signals of the as-cast film relax back to the 
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initial state within 5 s, whereas the film annealed at 200 °C maintains 
its p-doped state, which confirms the non-volatile behaviour. When the 
same samples are pre-biased at a low-gate potential (LGP) of −0.7 V, the 
OMIEC can be partially p doped and it rapidly recovers its neutral state 
when the gate is grounded. We argue that the LGP can dope the amor-
phous region in a volatile manner. Moreover, we traced the anions in a 
crystalline channel directly using X-ray scattering (Fig. 1h) and observe 
that lamellar stacking expands from 1.39 to 1.53 nm only when sufficient 
HGP is supplied, suggesting that anions are trapped among the ordered 
and compact glycol side chains and can de-trap only when a sufficient 
positive potential is applied. This trapping/de-trapping process corre-
sponds to the reversible potentiation/depression of v-OECT synapses.

The energy barrier to embed [TFSI−] into the crystalline glycol side 
chains is around 0.8 eV when using a polarizable gold (Au) electrode, 
as revealed by the breakpoint potential of the 200 °C-annealed sample 
(Fig. 1e). If non-polarizable Ag/AgCl is used as the gate electrode, only 
volatile behaviour is observed. The GIWAXS and X-ray photoelectron 
spectroscopy (XPS) measurements show that [TFSI−] can still be trapped 
inside the channel (Fig. 1g,h). We argue that this volatility is because the 
counterions ([EMIM+]) are attracted by the trapped anions in the chan-
nel and therefore compensate them. To demonstrate this, the cyclic 
voltammetry measurements of Au and Ag/AgCl in [EMIM+][TFSI−] were 
conducted and we found that [EMIM+] can only be reversibly reduced to 
a neutral product on the Au gate when a negative voltage was applied. 
This redox reaction prevents the compensating effect postulated above 
and ensures the non-volatile behaviour of the cv-OECT at HGP (Supple-
mentary Text and Supplementary Figs. 8 and 9). By carefully controlling 
the crystallinity and electrode process (Fig. 1i), volatile/non-volatile 
properties can be simultaneously achieved in a single cv-OECT.

Volatile receptor behaviours
To evaluate the volatile performance of v-OECTs for multi-modal bio-
sensing functions, we applied the LGP (Fig. 2a). The signal amplifi-
cation capability of the OECT depends on the channel dimensions 
and figure of merit (μC*). Figure 2b shows the volatile transfer curves 
at different channel crystallinity values. The μC* value, and thus the 
transconductance of v-OECTs, increases with crystallinity (Fig. 2b,c 
and Supplementary Figs. 10 and 11). Compared with p-OECT, the hole 
mobility (μ) of v-OECT benefits from the crystallinity when gated 
by both ion gel and aqueous solutions (Fig. 2c and Supplementary  
Figs. 15–18), which indicates that ultrashort channel lengths may restrain 
the heterogeneous swelling effect in crystalline OMIECs (Supplementary 
Figs. 18 and 19; Supplementary Text provides a detailed discussion)29. 
The crystalline v-OECT annealed at 200 °C (called cv-OECT) shows a 
normalized peak transconductance of gm/VDS = 27 mS V–1, an on/off ratio 
of 5 × 105 and a subthreshold swing (SS) of 65 mV dec–1. The SS value is 
close to the thermodynamic limit (59.6 mV dec–1) in the subthreshold 
regime with VGS = 0 V, which is in contrast to the SS value of p-OECTs 
(121 mV dec–1) and other reported vertical electrolyte-gated transis-
tors such as poly(diketopyrrolopyrrole-terthiophene) polymer-based 
vertical electrolyte gated organic field effect transistors (v-EGOFETs) 
(90.5 mV dec–1) (ref. 30). As a key parameter, the on/off ratio of cv-OECT 
can be as high as 8 × 106 through tailoring the channel geometry (Sup-
plementary Fig. 12), a record-high value in OMIEC-based transistors.

The ion-permeable OMIEC-based channel enables the devices to 
work in aqueous environments (0.1 M NaCl; Supplementary Figs. 13  
and 14) without performance degradation. As for the transient behav-
iour, the volatile switching time of cv-OECT, calculated by a single expo-
nential fitting, is τon = 6.67 and 0.82 ms for 104 and 400 μm2 devices, 
respectively (Fig. 2d and Supplementary Fig. 25). These switching 
times are shorter than that of p-OECT with a similar footprint (>100 ms; 
Supplementary Fig. 11) because of the smaller doping area of v-OECT, 
which also mitigates the instability issue. Hence, the cv-OECT maintains 
a high on/off ratio of 106 and identical switching speed after 30 min of 
cycling in air (Fig. 2d).

Figure 2e and Supplementary Table 2 summarize the performance 
of several state-of-the-art electrolyte-gated transistors in terms of their 
SS at 0 V and on/off ratios, which are benchmarks of power efficiency 
and amplification capability16,17,30–36. The low SS with a high on/off ratio, 
together with a faster response time, means our cv-OECT can be used as 
a power-efficient multi-sensory biological receptor. As a proof of con-
cept, the local ion concentration changes in Mimosa pudica and Venus 
flytrap caused by light and mechanical stimuli were measured using 
our cv-OECT (Fig. 2f and Supplementary Figs. 20 and 21), without using 
additional amplifying circuits. Moreover, ECG recording was carried 
out using a flexible cv-OECT working in the subthreshold regime with 
low energy consumption (<1 μW) compared with PEDOT:PSS-based 
OECTs (typically >500 μW) (Fig. 2g and Supplementary Fig. 22)17.  
We also demonstrate that our cv-OECT is suitable for multi-modal 
sensory NNs for edge computing37 applications (Fig. 2h and Supple-
mentary Fig. 23). As a proof of concept, cv-OECT shows gustation and 
temperature sensation with a high normalized response of 19.0% per 
decade and 3.2% per °C, respectively. The ultrashort channel together 
with the trap-filling effect is also promising for artificial vision applica-
tions (Supplementary Fig. 23e)38.

Non-volatile synaptic behaviours
The device architecture of the non-volatile synaptic v-OECT is the same 
as that of the volatile v-OECT (Fig. 3a); however, a higher gate opera-
tion voltage is used in the latter. As shown in Fig. 3b, the cv-OECT con-
ductance change, when gated by the ion gel, can be modulated in the 
long term by applying gate pulses with amplitudes larger than |−0.8| V. 
Below this, the cv-OECT is volatile (Supplementary Fig. 27). In contrast, 
the as-cast device can only work in the volatile mode (Supplementary  
Fig. 29). The non-volatile behaviour is observed by the transfer curves 
that show a centrosymmetric hysteretic behaviour (Fig. 3c), providing 
a memory window of 2.1 V (ref. 39). We evaluated the state retention 
of the cv-OECT (Fig. 3d) with the gate grounded (a prerequisite for 
large-scale homogeneous integration in NNs). The conductance of 
the cv-OECT was switched between six analogue states with a wide 
dynamic range of 32. Each state was maintained for more than 10,000 s 
in ambient air with a conductance drift coefficient of γ ≈ 0.003–0.006 
(R(t) = R0(t/t0)γ; Fig. 3d), which is comparable with the state-of-the-art 
heterostructure based on phase-change random-access memories11.

Energy- and time-efficient analogue in-memory computing 
requires linear, symmetric and precise conductance update, as well 
as a large number of states over a wide dynamic range40. As shown in 
Fig. 3f, the cv-OECT shows 1,024 (10-bit) distinct states over a wide 
dynamic conductance range in the LTP. The number of bits can be fur-
ther increased by reducing the programming pulse width/amplitude 
(Fig. 3b and Supplementary Figs. 27 and 28). The low intrinsic conduct-
ance of our OMIEC and large transconductance of the cv-OECT are 
beneficial for this behaviour. As a result, the device is more resilient to 
memory and computing errors due to write/read noise and conduct-
ance drift even with a large density of conductance states. Although the 
write noise of the cv-OECT can be confined under both voltage and cur-
rent control, as the nonlinearity of υP/υD = 0.20/1.63 and a high signal-to 
noise level of (ΔGDS/σ)2 ≈ 179 were achieved using standard 50-state 
programming (Fig. 3f and Supplementary Figs. 24 and 25), where σ is 
the standard deviation (s.d.) of the conductance update. When current 
pulses were applied, the cv-OECT shows (ΔGDS/σ)2 ≈ 290 together with 
a low cycle-to-cycle variation of ~0.49% during 2,000 potentiation/
depression events in 50 cycles (Fig. 3e and Supplementary Fig. 25). 
The one-to-one correspondence was established between each state 
in the potentiation/depression process. Note that the programming 
pulse width and energy consumption of the cv-OECT can be shorter 
when the device is scaled down. For example, the 20 × 20 μm2 device 
enables a 200 ns write pulse followed by a short write–read delay of 
~800 ns, and the switching time of the 100 × 100 nm2 device is esti-
mated to be in almost nanoseconds (Supplementary Figs. 26–28)21,41. 
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In addition, the cv-OECT also provides a platform for mode-switchable 
transistors based on other channel materials (Supplementary Fig. 30). 
Long retention, low switching stochasticity, large number of analogue 
states and fast-pulsed operation make cv-OECTs a promising candidate 
for analogue in-memory computing to process sensory information 
feedback from receptors in real time.

Beyond LTP, we also demonstrated STDP, which is a fundamen-
tal local learning rule practiced by the human brain42. Our STDP syn-
apse consists of two identical cv-OECTs, forming a homogeneous 
1-transistor–1-resistor (1T1R) architecture (Fig. 3g (inset) and Supple-
mentary Fig. 31). The source of transistor T is in series with the gate of 
resistor R and the IDS value of R is monitored through a read pulse (Vread). 
Paired nervous impulses (named pre-spike/post-spike) are applied to 
the synapse with a time delay (Δt). The post-spike (HGP) drops on the 
gate of R decrease with the increase in Δt, and they are the same as the 
non-volatile conductance change in R because T is volatilely tuned by 

the pre-spike (LGP). This relation is well fitted to a single exponential 
function (Fig. 3h and Supplementary Fig. 31) with a time constant of 
~60 ms, which is similar to its biological counterpart42. The advantages 
of our hardware implementation of STDP include non-volatile, ana-
logue and highly accurate conductance tuning compared with other 
emerging electronic synapses43; the large off-state resistance of the 
T channel is less prone to conductance drift caused by the sneak gate 
current21; and no need for heterogeneous integration (for example, 
diffusive and drift memristors) or complex pulse engineering44, pro-
viding the building blocks of a homogeneous bioplausible SNN (ref. 2).

We monolithically integrated the cv-OECTs on the same chip to 
implement SNNs equipped with the hardware-encoded supervised 
STDP learning rule (Fig. 3g). The array consists of 18 cv-OECTs, (9 Ts 
and 9 Rs; Fig. 4a and Supplementary Fig. 32). Every two cv-OECTs on 
the same row form an STDP synapse. The input to the SNN is mapped 
to the pulse width of the spikes. Pre-spikes (−0.8 V, 100 ms) are applied 
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Fig. 2 | Volatile receptor behaviour. a, Schematic of a cv-OECT acting as a 
volatile multi-sensory receptor. b, Transfer curves and related transconductance 
of ion-gel-gated v-OECT annealed at various temperatures (pink, 200 °C; purple, 
150 °C; blue, 100 °C; black, as-cast film); transfer curves (inset) with IDS plotted 
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to the gates of T of different rows and the output currents are inte-
grated by post-neurons. The neuronal states are then compared with 
a ‘teacher’ signal to decide whether a set or reset (−2 V or +2 V, 2 ms) 
post-spike should be applied to the drains of the Ts in different columns 
to potentiate/depress the synapses via the aforementioned STDP rule. 
As a result, neurons that fire together tend to wire together, a manifes-
tation of the Hebbian learning rule. When the post-spike/pre-spike is 
completely overlapped, the network can also function as an artificial 
neural network (ANN) with parallel programming capability because 
of the 1T1R architecture (Supplementary Fig. 33). We compare the 

simulated performance of such a homogeneous single-layer SNN or 
ANN with the alternative implementations using RRAMs for classifying 
handwritten digits from the Modified National Institute of Standards 
and Technology (MNIST) database (Fig. 3h) based on the experimen-
tally measured nonlinearity and cycle-to-cycle and device-to-device 
variation of the cv-OECT arrays (Supplementary Fig. 34). The resultant 
SNN shows a classification accuracy of ~89% (Fig. 3i), comparable with 
the result of the ANN based on a homogeneous cv-OECT array (~91%), 
which is higher than that of a six-bit heterogeneous RRAM-based SNN 
(~83%) and ANN (~87%). For practical hardware implementation, the 
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SNN could also be homogeneously integrated with a cv-OECT-based 
RC to reduce the network dimensions (from 15,680F2 to 80F2 for a 
classification task involving MNIST database digits, where F denotes 
the footprint of a single cv-OECT; Methods and Supplementary Fig. 35 
provide a detailed discussion).

Integrated functions for fused sensing–
processing
For leveraging the dual operation mode of our cv-OECT, we mimicked 
the fused sensing–processing function of a biological nervous sys-
tem. First, a conditioned reflex—a commonly observed behaviour 
that helps biocreatures to better survive—was demonstrated using a 
circuit similar to that of STDP (Fig. 4a,b and Supplementary Fig. 31), 
where T is gated via an aqueous solution with varied ion concentra-
tions and species to perceive information, whereas R is gated by ion 
gel for memory. A d.c. voltage (VDD = −0.8 V) is supplied to the drain of 
T. When the ‘Bell’ (represented by +0.4 V signal spikes) rings, VDD has 

a negligible influence on the conductance (memory level) of R due to 
the large off-state resistance of the cv-OECT. Once the ‘Food’ signal 
(−0.8 V) spikes together with the ‘Bell’ signal, the GDS value of T can 
be temporally switched by the LGP, resulting in VGD becoming higher 
than −0.8 V so that the conductance of R can be tuned in a non-volatile 
manner. More importantly, the learning rate strongly depends on the 
learning environment. The effective gate potential of T is sensitive to 
the ion concentration and species due to the Nernst potential, result-
ing in the memory level of R being correlated to the anion activity 
(Fig. 4c, inset).

Finally, as a proof of concept, real-time cardiac disease diagnoses 
were achieved using an RC with all-homogeneous integration sens-
ing–processing with identical cv-OECTs. As shown in Fig. 4d, 12-lead 
ECG signals of five kinds of cardiac disease were captured by a 12 × 1 
cv-OECT-based receptor array, which also acted as neurons or com-
puting nodes of a dynamic reservoir. The captured ECG signals were 
leaky integrated on receptors and the IDS output was then sampled 
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Fig. 4 | Fused sensing–processing functions. a, Schematic of the 1T1R learning 
unit that contains two identical cv-OECTs, where T and R act as the receptor and 
synapse, respectively. b, Image of a 9 × 2 cv-OECT array comprising 9 Ts and 9 Rs. 
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can be captured by a 12 × 1 cv-OECT-based receptor array, which also acts as a 
volatile neuron under LGP for RC. The output of each receptor was divided into 
13 sample points. Thus, the output of the reservoir was delivered to a 12 × 13 × 5 cv-
OECT-based ANN for classification (Methods). Here, trans-impedance amplifier 
(TIA) and analog-to-digital converter (ADC) were used for the further processing 
of ANN output current. The grey dashed box shows a 1T1R unit in b. e, Simulated 
recognition accuracy of five kinds of ECG waveform during 800 training epochs. 
The inset shows the confusion matrix of classification after training.

http://www.nature.com/natureelectronics


Nature Electronics | Volume 6 | April 2023 | 281–291 288

Article https://doi.org/10.1038/s41928-023-00950-y

and used as feedback to a 156 × 5 cv-OECT-based ANN readout map for 
classification. The accuracy of the simulated diagnoses based on the 
experimentally calibrated device models reached 100% after 700 train-
ing epochs (Fig. 4e and Methods). Note that the aforementioned 
multi-modal sensing, such as body temperature, fluid monitoring 
and virus detection, could be potentially integrated seamlessly into 
the reservoir, leading to portable and efficient edge AI hardware for 
healthcare applications.

Conclusions
We have reported OECTs that provide reconfigurable multi-modal sens-
ing and non-volatile analogue memory capabilities. This was achieved 
by controlling the device architecture, channel microstructure and 
electrode process. Through the homogeneous integration of tran-
sistors, we created SNN chips with hardware-encoded STDP learning 
rules and showed that this system could provide functions such as 
environment-aware conditioned reflexes. Our approach could be of 
use in the development of edge AI devices.

Methods
Device fabrication
The synthesis method of PTBT-p can be found in the Supplemen-
tary Information. The PTBT-p was dissolved in chlorobenzene at 
a concentration of 20 mg ml–1. To enhance the crystallinity, 3% v/v 
1-phenylnaphthalene was used as the additive, and the solution was 
stirred at 80 °C overnight. For the fabrication of the ion gel, ionic liquid 
and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) 
were purchased from Sigma-Aldrich. PVDF-HFP and EMIMTFSI were 
completely dissolved in acetone at 50 °C, with a weight proportion of 
1:4:7 (PVDF-HFP:EMIMTFSI:acetone).

Then, 5 nm Cr and 30 nm patterned Au or patterned indium 
tin oxide (ITO) were deposited onto the cleaned quartz wafers (or 
polydimethylsiloxane substrate for a flexible device) as the bottom 
electrode using a shadow mask. To reduce the contact resistance, 
the patterned electrode was treated by ultraviolet–ozone or oxygen 
plasma. Next, the OMIEC solution was cast onto the bottom elec-
trode using the solution shear method under a substrate tempera-
ture of 50 °C to acquire high-quality films, followed by annealing at 
100–200 °C for 1 h in a nitrogen atmosphere to enhance the crys-
tallinity of the channels. Then, 80 nm Au was deposited as the top 
electrode and 50 nm Au or Ag was deposited as the gate electrode, 
followed by plasma-reactive ion-etching process (Oxford Plasmalab 
80, 10 W, 20 s.c.c.m. O2, 10 min) to form the channel area. The chan-
nel length ranges from 40 to 60 nm to maximize the switching speed 
and off-state resistance. For the devices gated by the ion gel, 10 μl 
gel solution was directly drop coated onto the gate and channel area 
using a dispenser and then evacuated for 30 min. For the devices 
gated by the aqueous solution, to reduce the contact area between 
the electrode and electrolyte, a polydimethylsiloxane well was pasted 
onto the channel area to contain the electrolyte. To evaluate the 
volatile performance, a Ag/AgCl pallet was directly inserted into the 
ion gel or NaCl aqueous solution to provide the gate potential. For 
the fabrication of the p-OECTs, 5 nm Cr and 50 nm Au were depos-
ited onto the cleaned quartz wafers and patterned through a metal 
lift-off process. The channel film with the thickness range from 100 
to 1,000 nm was processed by the drop-cast method; after that, the 
OMIEC was removed everywhere except for the channel area. For 
p-OECTs, Au or Ag/AgCl electrode (Warner Instruments) were directly 
inserted into the electrolyte and used as the gate electrodes. For the 
fabrication of poly(styrene sulfonic acid) (PSSH)-gated organic field 
effect transistors, the PSSH solution was spin coated onto the PTBT-p 
film (600 rpm, 90 s) to form the dielectric layer with a thickness of 
300 nm. The devices were then evacuated overnight to remove the 
residual water. A Au pallet was used as the gate electrode. The other 
parts of this method are identical with p-OECTs.

Electrical characterization of volatile and non-volatile 
operation modes
The steady-state volatile characteristics of OECTs were measured with 
a Keithley 2602B source measurement unit (SMU) using two chan-
nels. The first channel supplied VDS and measured the IDS, whereas the 
second channel provided VGS. The transient behaviour of the volatile 
mode is measured by a Keithley DMM 6500 digital multi-meter. For 
the non-volatile characteristics, the write pulse was supplied by a 
Tektronix TBS2000B arbitrary wave function generator and the read 
current was recorded by a Keithley 2602B SMU connected to the source 
terminal: the conductance was evaluated as GDS = Iread/Vread. For the 
sub-microsecond fast-pulsed operation, the conductance change 
channel was derived by measuring the voltage fluctuations across a 
load resistor in series with the cv-OECT using a Keysight DSOX3104T 
oscilloscope.

Physiology signal recording
During the recording, the cv-OECT-based circuit operated at 
VDD = −0.8 V (supplied by a 2602B SMU) and VGS = 0 V. The ECG record-
ing was performed on a healthy volunteer. Before the ECG recording, 
the skin at the recording sites was totally cleaned using soap and 50% 
v/v isopropyl alcohol. Next, two medical gel-assisted Ag/AgCl ECG elec-
trodes were pasted onto the skin over the left chest and right wrist, and 
then connected to the gate and grounded source of the cv-OECT using 
two Teflon-shielded cables, respectively. The ECG signal was recorded 
by monitoring the IDS value using a DMM 6500 digital multimeter with a 
sampling rate of 1 kHz. For the recording of the plant physiology signal, 
a Ag/AgCl wire covered with biocompatible ion gel was pasted onto the 
leaves or stems of plants and connected to the gate electrode of the 
cv-OECT. Moreover, a grounded Ag wire wrapped around a wooden 
stick was inserted into the soil adjacent to the plant. Other parts of 
this method are identical with the ECG recording. The experiment was 
performed in a dark room to prevent a possible light response.

Evaluation of STDP function
For the STDP function, EMIMTFSI-based ion gel was used as the gate 
electrode and electrolyte for both T and R OECTs. Two channels of the 
2602B SMU were used to generate the pre-spike and post-spike and a 
Keithley 2400 SMU was used to supply the read pulse and measure the 
conductance change; the time delay between the spikes was controlled 
by customized LabVIEW 2018 software.

GIWAXS
GIWAXS measurements were performed at beamline 7.3.3 at the 
Advanced Light Source. Samples were prepared on p-doped Si sub-
strates using an identical method as those used in the devices. To ensure 
the ions can only enter into and get out from the film from the cross sec-
tion like they do in the devices, a layer of amorphous polystyrene film 
was deposited onto the OMIEC film using the solution shear method, 
which acts as the ion-blocking layer. Then, about 10 μl EMIMTFSI was 
dropped onto the exposed cross section followed by doping the sam-
ples at various potentials for 10 s with the substrate grounded. Potential 
control was carried out with a 2602B SMU with customized LabVIEW 
software. After doping, the ionic liquid was removed from the sample 
using a syringe. The 10 keV X-ray beam was incident at a grazing angle 
of 0.12°–0.16°, selected to maximize the scattering intensity from the 
samples. The scattered X-rays were detected using a Dectris Pilatus 2M 
photon-counting detector.

Operando UV–vis spectroscopy
Probe station and in situ UV–vis spectroscopy were combined here to 
carry out the measurement. Polystyrene-coated samples were prepared 
as mentioned in the GIWAXS section except for replacing the p-doped 
Si with an ITO substrate. A Au pallet was used as the working electrode 
with the ITO substrate grounded. Potential control was carried out 
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with a 2602B SMU with customized LabVIEW software. Simultaneous 
absorption spectroscopy was carried out with a halogen white-light 
source (Ocean Optics, DH-2000-BAL) and an optical-fibre light path 
split to separate the UV–vis (Ocean Optics, FLAME-S) and near-infrared 
(Ocean Optics, NQ512) spectrometers. The spectroscopic data were 
recorded with the OceanView software.

XPS
The XPS spectra of the films doped at various potentials were taken 
using Thermo Fisher ESCALAB Xi+ equipped with a monochromatic Kr 
Al X-ray source (spot size, around 500 μm). A flood gun was used for 
charge compensation. The PTBT-p films used as the XPS samples were 
deposited onto a clean p-doped Si substrate using the drop-coating 
method, and the film thickness was about 2 μm.

Cyclic voltammetry and electrochemical impedance 
spectroscopy
The cyclic voltammetry measurements of the polarizable/
non-polarizable electrode and electrochemical impedance spectros-
copy measurements of the films annealed at various temperatures 
were taken using an Autolab electrochemical workstation. For cyclic 
voltammetry, a Au pallet or Ag/AgCl electrode (Warner Instruments) 
was used as the working electrode. For electrochemical impedance 
spectroscopy, PTBT-p films were deposited onto the Au-coated ITO 
substrate using the solution shear method, which serve as the working 
electrode. In both cases, a platinum plate and Ag/AgCl (saturated KCl) 
were used as the counter electrode and reference electrode, respec-
tively. EMIMTFSI ionic liquid was chosen as the electrolyte.

Cryo-EM
The cryo-EM specimens were prepared as follows. In brief, the samples 
were floated on a glow-discharged holey-carbon-film-coated copper 
grid (Quantifoil R 2/2, Electron Microscopy Sciences). The grids were 
manually blotted using a custom-built manual plunger at room tem-
perature. The samples were blotted for 4–5 s with Whatman No. 1 filter 
paper immediately before plunge freezing in liquid ethane cooled by 
liquid nitrogen. The flash-frozen grids were transferred into liquid 
nitrogen for storage. The cryo-EM samples were examined using an FEI 
Talos F200C TEM operating at 200 kV (high tension) at −178 °C in the 
low-dose mode. A Gatan 626 cryo-holder was used. The micrographs 
were acquired with a high-sensitivity 4,000 × 4,000 pixel FEI CETA 
complementary metal–oxide–semiconductor camera under magni-
fications of 92,000–120,000.

Simulation and training principle of ANNs/SNNs
Simulated in situ training of a single-layer ANN and SNN with both 
OECT and RRAM synapses have been compared. For the simulated ANN 
training (Fig. 3g), standard MNIST datasets are used to benchmark the 
learning performance. During the training phase, hardware program-
ming inaccuracy physically extracted from the experimental measure-
ments has been accounted. The network parameters are optimized 
using the stochastic gradient descent (SGD) method with a learning 
rate of 0.01 and batch size of 256. The training takes 25 epochs until 
reaching convergence.

For the simulation of cv-OECT- or RRAM-based SNNs, the same 
MNIST dataset is employed for easy comparison with ANNs. Here each 
handwritten digit of the MNIST dataset is reshaped into a 784 × 1 vector 
and normalized. Thus, a 784 × 2 × 10 cv-OECT-based array is required. 
For cv-OECT-based SNNs, each element of the input vector will be 
encoded as the width of a voltage pulse (with a fixed amplitude of 0.1 V). 
The STDP synapse comprises two identical cv-OECTs, where T works in 
the volatile mode and R in the same synapse works in the non-volatile 
mode. Synapses of the same row share a common bitline and sourceline 
(Fig. 3g) interfacing the input and pre-spike signals with the drains 
of Rs and gates of Ts, respectively. In addition, synapses of the same 

column share a common wordline, connecting the sources of Rs and 
drains of Ts with the integrate-and-fire neurons and post-spike signals, 
respectively. The input pulses of different widths are applied to the bit-
lines, immediately followed by short pre-spikes (−0.8 V) applied to the 
associated wordlines to switch on the Ts that experience subsequent 
conductance decay. The neurons integrate currents along the time. 
The winner-takes-all scheme is implemented using lateral inhibition 
between the neurons. Once an input sample is presented, one of the 
post-neurons will receive a teacher signal. If the winner neuron misses 
the teacher signal, set/reset (−V/+V) post-spikes will be applied to the 
drains of the Ts in different columns (sourcelines) to potentiate the 
synapses associated with the neuron that receives the teacher signal 
and depresses the synapses of the winner neuron.

The STDP characteristic of a discrete synapse was experimentally 
measured (Fig. 3h) and numerically fitted to the following equations.

ΔWdepression(Δt) = 0.06 − 1.81e−
Δt

65.34

ΔWexcitation(Δt) = 0.24 + 1.43e−
Δt

57.73

Here Δt is the time difference between a pre-spike and the associ-
ated post-spike. Figure 3h also illustrates the variance in programming 
the non-volatile OECTs under different Δt values. The deviations obey 
normal distributions, which have been taken into consideration of the 
simulation. The simulation of RRAM-based SNNs follows the same 
protocol. The STDP characteristic is based on another work43 where the 
programming noise of RRAMs has also been taken into consideration 
like that of OECT-based SNN simulation.

One main issue that hinders the hardware implementation of 
OECT-based ANN/SNN is poor device uniformity and yield, as a result 
of quality issues of the OMIEC thin film such as pinholes, thickness 
uniformity and other microscopic film defects. These issues make it 
difficult for the practical use of such arrays with large dimensions. 
To reduce the number of devices that are required for a specific task 
(such as image and disease classification), devices with volatile behav-
iour can be introduced for RC, which can reduce the dimensions of 
the input data of the ANN/SNN. To prove the potential of cv-OECT in 
hardware implementation, we proposed a homogeneous network 
architecture that consists of a cv-OECT reservoir and two 4 × 2 cv-OECT 
arrays (fully connected layer in SNN) (Supplementary Fig. 35a). RC can 
reduce the dimensions of the input data and thus reduce the required 
number of devices and dimensions of SNN. For single-layer SNN used 
for the classification task involving 28 × 28 digits in the MNIST data-
set, the estimated network dimensions are 784F × 10F × 2 = 15,680F2 
(784 inputs and 10 outputs), where F denotes the footprint of a single 
cv-OECT. When integrated with the RC, the network can be scaled 
down to F × 10F × 2 = 80F2 (four inputs and ten outputs). Importantly, 
in this homogeneous network, both volatile (for reservoir and T) and 
non-volatile (for R) behaviours of cv-OECT are indispensable. We veri-
fied the practicability of the hardware in the classification of handwrit-
ten digits in the MNIST database. The image will first be binarized, and 
then split and combined into an 88 × 5-bit image. These 88 × 5-bit data 
act as the input of the reservoir. The reservoir output is extracted from 
the current decay curves of the OECT (Supplementary Fig. 35c) with a 
fixed time delay (Δt = 20 ms) after the input. Thus, as shown in Supple-
mentary Fig. 35b, the five-bit input can be simplified to analogue data. 
These data will be encoded as the width of the input pulses of the fully 
connected layer. The training of the fully connected layer also follows 
the same protocol mentioned above.

Simulation and training principle of RC for real-time cardiac 
disease diagnoses
In the simulation of RC for real-time cardiac disease diagnoses, the ECG 
signals of five categories (normal and four disease signals, namely, 
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normal ECG (Norm.), conduction disturbance (Cd.), myocardial infarc-
tion (Mi.), ST/T change (STTC.) and hypertrophy (Hyp.)) are randomly 
selected from the PTB-XL, a large-scale publicly available electrocardi-
ography dataset45, as the inputs. Each category contains 10 samples, 
with a total sample size of 50. Each selected sample has no significant 
drift in the baseline of the signal in its 12 channels of the ECG recordings. 
The recording of each channel consists of 10 to 13 complete heartbeats. 
For convenience, if the number of heartbeats is less than 13, zeros will be 
appended. Each heartbeat has a temporal dimension of 90. Therefore, 
the shape of the dataset is 50 × 12 × 13 × 90. To classify the ECG signals 
using an OECT-based reservoir, the ECG signal is first converted into 
a current signal, serving the input to the gate of a volatile OECT. A 
fixed-bias voltage is maintained across its source and drain. The final 
output is the drain current sampled at the end of the input ECG wave-
form. The volatile conductance evolution of the cv-OECT follows the 
memristive dynamics:

dG(t)
dt

= ki (t) + nG(t).

Here k and n are the fitting parameters of the device, which are 10 
and 2 in this simulation, respectively. Each heartbeat recording (dimen-
sion, 90) is mapped to a scalar current reading owing to the volatile 
behaviour of cv-OECTs under LGP, such that the shape of the output 
dataset is (50, 12, 13), and then the relevant results are imported into 
the ANN readout network that works as a linear classifier. Here seven 
samples of each category are used for training and three samples are 
used for testing.

Data availability
The data that support the findings of this study are available via Science 
Data Bank at https://www.scidb.cn/s/Y3iINz.

Code availability
The simulation codes used for this study are available via Zenodo at 
https://www.zenodo.org/record/7581706#.Y-DxZHBBxPZ.
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