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Abstract
Time-dependent second harmonic generation (TD-SHG) is an emergent sensitive and
non-contact method to qualitatively/quantitively characterize the semiconductor materials,
which is closely related to the interfacial electric field. Here, the TD-SHG technique is used to
study the interface quality of atomic layer deposited 15 nm HfO2/Si (n-type/p-type) samples,
which is compared to the conventional electrical characterization method. A relation between
the interface state density and the time constant extracted from TD-SHG is revealed, indicating
that TD-SHG is an effective method to evaluate the interface state density. In addition, the
dopant type and dopant density can be disclosed by resolving the dynamic process of TD-SHG.
The scenario of interfacial electric field between the initial electric field and the laser-induced
electric field is proposed to explain the time-dependent evolution of SHG signal. In conclusion,
the TD-SHG is a sensitive and non-contact method as well as simple and fast to characterize the
semiconductor materials, which may facilitate the semiconductor in-line testing.
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1. Introduction

To accommodate the miniaturization of field-effect transistors
(FETs), the high-k gate oxides have been developed recently,
including hafnium oxide (HfO2), zirconium oxide (ZrO2),
and alumina (Al2O3) [1, 2]. Among the potential candid-
ates, HfO2 becomes a leading material due to its superior
high-k gate dielectric characteristics. It persists a relatively
large band gap (>5 eV) [3], a high dielectric constant (∼25)
[4], the good thermal and thermodynamic stability in contact
with silicon [5]. Consequently, HfO2 has been the focus of
extensive research, especially for its application in high-k gate
dielectrics as FETs [6, 7].

The high-k materials under consideration are prone to
intrinsic and process-induced defects, which can trap elec-
trons through the localized states. Therefore, it can affect the
device performance. These defects in the gate dielectric films
can lead to various issues, including increased leakage current,
lowered breakdown voltage, threshold voltage instability and
decreased carrier mobility/lifetime [8]. A high-quality oxide-
semiconductor interface with a low interface state density is
crucial for semiconductor applications. Therefore, a precise
characterization of defects and interface state density is essen-
tial for advancing the performance and reliability of semicon-
ductor devices.

Traditionally, electrical methods such as the capacitance–
voltage (C–V) method or conductance method have been
employed to characterize the electroactive defects in the
silicon-oxide systems [9, 10]. However, these methods come
with notable limitations. The electrical methods need to fab-
ricate the well-constructed electrode contacts which tends
to be destructive as well as a time-consuming process. The
tested samples cannot be further processed in the device fab-
rication sequence, namely the electrical methods cannot be
directly incorporated into the device fabrication sequence.
Consequently, there’s an urgent need for fast, non-destructive
characterization techniques that can accurately measure elec-
troactive defects and be smoothly integrated into the manu-
facturing workflow. The optical methods offer the promising
alternatives for efficient, non-destructive, non-contact charac-
terization of defects, which may facilitate the semiconductor
device manufacture.

Optical second harmonic generation (SHG) is a nonlinear
optical phenomenon that serves as a sensitive probe for study-
ing buried solids and interfacial properties [11]. The sensitiv-
ity of SHG to interfacial electrical properties, such as charge
traps [12] and doping levels [13, 14], makes it as a unique
characterization technique. In the centrosymmetric materials,
dipole contributions at the lowest order are typically prohib-
ited, except the dipole contribution at the interface where
inversion symmetry is disrupted due to material discontinuity
aswell as the interfacial electric field. This inversion symmetry
breaking could generate the SHG signal. The SHG intensity
(I2ω) can be expressed as [15]:

I2ω (t)∝
∣∣∣χ (2)

interface +χ (3) [E0 +E(t)]
∣∣∣2(Iω)2 (1)

where χ (2)
interface and χ (3) are the second-order and third-order

nonlinear susceptibility tensors, respectively. E0 is the initial
static built-in electric field while Iω is the intensity of the
incident laser. The term of χ (3)E0 describes the electric field
induced second harmonic effect, which has proven to be a
very sensitive probe for internal electric fields. At the dielec-
tric/semiconductor interface, an additional electric field E(t)
could be generated by the laser illuminated on the sample,
which also varies with the time of illumination. The time
dependent evolution of SHG is closely related to the trapping
and detrapping process of laser excited electrons in the dielec-
tric/semiconductor system [16].

Various studies have verified that the SHG technique
is an efficient characterization of silicon-based dielectrics
(SiO2 and high-k materials), offering profound insights into
the interfacial properties of silicon-based oxides. Fomenko
et al explored the uniformity in the distribution of interfacial
defects across gate dielectric films such as SiO2, Al2O3, ZrO2,
and HfO2 on Si. They employed the rotational anisotropy SHG
to assess the optical roughness of the films, which is regarded
as a quantity describing the nonuniformity in the distribution
of interfacial defects [17]. In another study, the detailed char-
acterizations of interface state density at the HfO2/Si filmwere
conducted by the SHG technique. These qualitative/quantitat-
ive evaluations provide the details about energy band bend-
ing at the HfO2/Si interface [18]. Therefore, the TD-SHG
should be a promising method to efficiently characterize the
defects and interface state density in the dielectric/semicon-
ductor structures.

In this work, the HfO2 thin films on n-type and p-type Si
substrate were grown by the atomic layer deposition. The con-
ductance method (G/ω−V measurement) is used to extract
the interface state density of the Au/HfO2/Si structure. A cor-
relation between SHG intensity and interface state density
is established to evaluate the quality of the HfO2 films. We
also reported the measurement that a two-photon absorption
is required to promote electrons from the valence band of Si
to the conduction band of HfO2 at an incident photon energy
of 1.59 eV via multiphoton internal-photoemission induced
second-harmonic generation technique. At last, we investig-
ated the TD-SHG for the n-doped and p-doped HfO2/Si sys-
tems at various doping concentrations. Our findings indic-
ate that the SHG signal exhibits sensitivity to the dopant
type and concentration. We attribute these observations to
the electric field formed by the initial electric field and the
laser-induced electric field, which ultimately drive electric
field induced SHG and influence the resulting SHG curves.
Our study indicates that the optical SHG is a highly efficient
and non-destructive method to characterize the semiconductor
materials, which provides a simple and fast solution for in-line
testing.
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Figure 1. (a) The measurement schematic of Au/HfO2/Si structure.
The positive voltage is defined as a voltage applied on the Au
electrode. The area of Au electrode is 50 µm × 50 µm. (b) The
typical AFM image of as-deposited HfO2 film with a scanning area
of 4 µm × 4 µm. (c) The typical x-ray diffraction (XRD) pattern
and (d) The x-ray reflectivity (XRR) pattern and the fitting of
as-deposited HfO2 film. (e) The x-ray photoelectron spectroscopy
(XPS) of S1, S4, S5 samples. (f) The fitting of XPS data for S1
sample.

2. Experiments

The HfO2 films (15 nm) were deposited on Si substrates via
the atomic layer deposition. The samples are classified by
dopant density of n-type Si substrate (S1: ∼8 × 1013 cm−3,
S2: 2 × 1017−5 × 1018 cm−3, S3: ⩾∼8 × 1019 cm−3) and p-
type Si substrate (S4: ∼2 × 1012 cm−3, S5: ∼2 × 1014 cm−3,
S6: 7.5 × 1017−8.5 × 1018 cm−3). The squared metal elec-
trodes (Au (50 nm)/Ti (5 nm)) were fabricated using the
conventional photolithography and followed by the electron
beam evaporation (shown in figure 1(a)). The surface mor-
phology of the HfO2 films was examined by the atomic
force microscopy (AFM, model AFM5500M). The crystal-
line structure of HfO2 thin films was investigated by the x-
ray diffraction (XRD, model D8 ADVANCE), while the x-ray
reflectivity (XRR) was employed to estimate the film thick-
ness. X-ray photoelectron spectroscopy (XPS, model AXIS,
SUPRA+) was applied to study the valence state and oxy-
gen state in the films. The capacitance–voltage (C–V) and
conductance–voltage (G/ω–V) measurements were conducted
using a Keysight E4980A precision LCR meter and the data
collection was facilitated by a custom Labview program. The

TD-SHG measurements were conducted by Aspirer 3000 sys-
tem using a pulsed laser with wavelength of 780 nm, pulse dur-
ation of 150 fs, and repetition frequency of 70 MHz. The laser
beam was focused on the sample at 45◦. The p-polarized SHG
signal (λ = 390 nm) was collected under the excitation of p-
polarized fundamental radiation (λ = 780 nm). The spot area
is 7 × 10−6 cm2. The average power intensity and the peak
power intensity irradiation on the samples are 42.4 kW cm−2

and 4.1 GW cm−2 respectively. P-polarized photons were
detected by photomultiplier, whereas the samples were placed
in the air. The TD-SHG experiments were performed with
a specific azimuthal angle, which is determined by rotation-
anisotropy SHG results to provide a standard process of charge
evolution.

3. Results and discussion

Figure 1(b) displays a typical AFM image of the as-deposited
HfO2 thin film with a surface roughness of 0.44 nm, indicat-
ing a flat surface of HfO2 film. Figure 1(c) presents the XRD
pattern of the HfO2 film on a Si substrate. Clear diffraction
peaks from HfO2 locating at 43.2◦ (121) and 50.4◦ (202) is
observed (Ref: No.21-0904). No impurity peak is identified.
The thickness of HfO2 is calculated to be ∼15 nm based on
the x-ray reflectivity (figure 1(d)), which also verifies the flat
surface of as-deposited HfO2 film. Figure 1(e) shows the XPS
spectra for three as-deposited HfO2 films in a wide range,
which is calibrated by the C 1s peak at 284.8 eV. The spec-
tra reveals the presence of Hf and O, which is consistent with
previous results [19]. To deduce the oxygen vacancy concen-
tration in the HfO2 films, the O 1s spectra is deconvoluted
from the XPS spectra. The typical deconvolution data is dis-
played in figure 1(f). Here, oxygen molecule (OM) represents
the bonded state of oxygen in the oxide lattices without vacan-
cies correlating to the peak at 530 eV while oxygen vacancy
(OV) denotes the bonded state of OVs related to the hydroxyl
groups (shown as the shoulder near the OM peak) [20]. The
estimated peak intensity ratios (I0) between the low-energy
satellite peak near 532 eV and the total oxygen peak intens-
ity are 20.39%, 12.22%, and 16.69% for the S1, S4, and S5
samples, respectively. Given that an OV releases two electrons
and twomolecular units per unit cell, the OV concentration can
be estimated as 1/4× I0. Accordingly, the OV concentration
of S1, S4, and S5 films can be estimated to be 5.10%, 3.05%,
and 4.17%, respectively, which is slightly larger compared to
previous reports [21].

The corrected capacitance–voltage (C–V) characteristics of
Au/HfO2/Si structure (n-type Si and p-type Si) under vari-
ous frequencies (1–500 kHz) are displayed in figures 2(a) and
(c). For the Au/HfO2/Si (n-type) sample, the three regimes
of accumulation, depletion and inversion are clearly shown
in figure 2(a), verifying a typical MOS behavior with con-
ventional C–V characteristics [22, 23]. At a large negative
voltage, the capacitance curve at the high frequency (500 kHz)
is independent of gate bias. The upturn of capacitance with
decreasing frequency at negative bias is likely due to the

3
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Figure 2. The corrected C–V and G/ω characteristics for
Au/HfO2/Si sample with n-type Si substrate (a) and (b) (S1 sample)
and with p-type Si substrate (c) and (d) (S4 sample). (e) The
calculated Dit versus frequency (semilog) for S1, S4, S5 samples. (f)
The distribution of calculated Dit for S1 sample (n-type) and S4
sample (p-type).

response of interface trap. A clear frequency dispersion at the
accumulation region (+2 V) is observed in the Au/HfO2/Si
(n-type) sample, especially at high frequency region, which
is closely related to the border traps near the interface or
series resistance in the MOS structure (figure 2(a)) [24, 25].
It also contributes to the observed C–V hysteresis. In addi-
tion, a shift of flat-band voltage (∆Vfb = 0.27 V at 500 kHz) is
revealed, which is consistent with previous reports [26, 27]. As
for the Au/HfO2/Si (p-type) sample, no frequency dispersion
is displayed at the depletion/inversion region (positive bias).
The shift of flat-band voltage is −0.15 V at the frequency of
500 kHz.

Here, we used the conductance method to extract the
density of interface state. Firstly, Nicollian and Goetzberger
method is used to extract the series resistance [28, 29]. The
strong accumulation admittance (Yma) ofMOS capacitor could
be calculated from the equation (2) including the meas-
ured capacitance (Cma), and conductance (Gma) (in strong
accumulation):

Yma = Gma + jωCma. (2)

Accordingly, the series resistance is the real part of the
impedance (Zm = 1/Ym), which is given by the relation:

Rs =
Gma

(Gma)
2
+(ωCma)

2 (3)

where ω is the angular frequency (ω = 2π f, f: frequency). The
calculated Rs values are used to correct the capacitance and
conductance. The corrected C–V and G/ω−V curves were
obtained by using the following relations:

C=

[
(Gm)

2
+(ωCm)

2
]
Cm

a2 +(ωCm)
2 (4)

G=

[
(Gm)

2
+(ωCm)

2
]
a

a2 +(ωCm)
2 (5)

where a= (Gm)− [(Gm)
2
+(ωCm)

2
]Rs,Cm is the measured

capacitance and Gm is the measured conductance. The cor-
rected G/ω-V characteristics for the Au/HfO2/Si structure are
illustrated in figures 2(b) and (d). Clearly, the value of G/ω
depends on frequency and voltage. Generally, the G/ω shows
a complex dependence as the increase of applied voltage for
the Au/HfO2/Si (n-type) sample, peaking near 0.5 V. The gate
bias dependent peak shift of G/ω indicates that the surface
potential responds to the gate bias when the Fermi level is loc-
ated between the conduction band and midgap [30]. Similar
peak shift of G/ω is also observed in the Au/HfO2/Si (p-type)
sample. Therefore, the interface states density could be cal-
culated using the corrected G/ω−V curve according to the
following equation [31]:

Dit ≈
2.5
Aq

(
GP

ω

)
max

(6)

where A and q are the electrode area (2.5 × 10−5 cm2)
and the element charge (1.60 × 10−19 C), respectively. The
frequency dependent extracted interface state density is dis-
played in figure 2(e). Obviously, the interface state density
monotonically increases as the increase of frequency for all
samples, peaking at a fixed frequency. Then it monotonic-
ally decreases with the increase of frequency. The peak values
of interface state density are 3.27 × 1012 eV−1cm−2 for S1
sample (f = 300 kHz), 3.06 × 1012 eV−1cm−2 for S4 sample
(f = 60 kHz) and 1.87 × 1012 eV−1cm−2 for S5 sample
(f = 40 kHz), revealing that S5 sample holds a comparatively
high interface quality between HfO2 and Si.

Since the change of carrier occupancy only occurs when the
energy of interface states is close to the Fermi level, the relat-
ive energy level (∆E) of the interface states can be extracted.
The distribution of interface state density below the conduc-
tion band, denoted asEC−ET (location of the trap energy), can
be determined according to the Shockley–Read–Hall statistics
[32–34]:

∆E= EC−ET = kBT× ln

(
σvthNC

ω

)
(7)
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where kB, T, vth, σ, NC are the Boltzmann constant, the tem-
perature, the thermal velocity of the majority carriers, the elec-
tron capture cross section of the trap state, and the effective
density of state of the majority carrier in the conduction band,
respectively. Figure 2(f) shows the exacted Dit as a function
of the energy level for the typical S1 (n-type) and S4 (p-type).
Clearly, the trap level ET is close to the conduction band EC
for the n-type Si substrate while it is far from the EC for the
p-type Si substrate. The interface state density is larger ran-
ging from 1.39 × 1012 eV−1cm−2 to 3.43 × 1012 eV−1cm−2

for n-type Si substrate (∆E ∈ (0.22, 0.36)) compared to that
of p-type Si substrate range of 1.29 × 1011 eV−1cm−2 to
3.06 × 1012 eV−1cm−2 (∆E ∈ (0.75, 0.9)).

TD-SHG is an emerging effective method to reveal the
semiconductor information, which is closely related to the
electron excitation, transport and trapping/detrapping. When
a high-energy pulsed laser irradiates on a typical oxide/semi-
conductor structure, the SHG signal rises rapidly indicating
the creation of a time-dependent quasistatic electric field. This
field originates from charge separation across the interface
due to trapping of injected electrons while the holes remain
in Si [35]. Additionally, the electrons could be significantly
affected by the trapping density or interface state density.
Correspondingly, the TD-SHG could be effectively used to
estimate the defects and interface state density. The corres-
ponding schematic of TD-SHG and the band structure are dis-
played in figures 3(a) and (b).

In the HfO2 (15 nm)/Si system, the SHG signal originates
from the trapped electrons relating to the interface state dens-
ity and traps near the interface. In addition, the laser induced
electron-hole separation could result in the electric field, which
also contributes to the SHG signal. The signal of electric field
induced SHG is closely linked to the dynamics of electron
trapping/detrapping at the interface and it can be described by
the solution of the equation [36]:

dne
dt

= (n0e− ne)/τ
e
trap − ne/τ

e
detrap (8)

where n0e and ne are the initial quantity of unfilled electron trap
concentration and filled electron trap concentration. 1/τ etrap
and 1/τ edetrap denote the trapping rate due to the laser illumin-
ation and the detrapping rate. Given that the rate of 1/τ etrap is
considerably high, the solution can be derived as:

ne (t) = n0e ·
(
1− e−t/τ etrap

)
. (9)

Hence, the following equation is used to describe the
dynamics process of TD-SHG:

I2ω (t) =
∣∣∣a0 + a1

(
1− e−t/τ etrap

)∣∣∣2 (10)

here, a0 and a1 are the parameters closely associated with the
initial value of SHG signal. The time constant τ is an effective
indicator of the electron trapping rate. Figure 3(c) displays the
time-dependent SHG signal under 200 mW over a time period
of 5 s with P-in/P-out polarization (incidence angle at 45◦).

Figure 3. (a) Schematic diagram of second harmonic generation
(SHG) for the HfO2/Si sample. (b) Schematic energy band diagram
for the laser induced electron excitation and transportation. (c) The
time dependence of second harmonic generation (TD-SHG) for S1,
S4 and S5. (d) The relationship between the interface states density
and the extracted time constant from (c). (e) The TD-SHG of S5
under various laser power. (f) The laser power dependent of the
extracted time constant for various samples in log scale. The solid
line is the power law fitting.

The TD-SHG signal monotonically increase as the increase of
time and it almost saturates after 2 s, which can be well fit-
ted by the equation (10). The extracted time constants (τ ) are
0.340, 0.353 and 0.372 s, for S1, S4 and S5 respectively. The
TD-SHG corresponds to the interfacial electric field related to
the laser induced electrons from Si valence band to the HfO2

conduction band as well as the electron diffusion to the traps
at the interface. The laser induced charge separation increases
the interfacial electric field, namely I2ω (t), up to a balanced
interfacial electric field (saturation of SHG intensity). A linear
relation between the extracted time constant τ and the inter-
face state density is revealed (figure 3(d)), indicating that the
TD-SHG is a sensitive and effective method for the character-
ization of semiconductor.

A typical laser power dependent TD-SHG for S5 sample
is displayed in figure 3(e) with the laser power ranging from
80 to 350 mW. As for the laser power below 200 mW, the
TD-SHG increases as the time followed by a saturation of
SHG, which can be well fitted by a single exponential func-
tion (equation (10), solid fitting line in figure 3(e)). The extrac-
ted electron trapping rate due to the laser excitation follows

5
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Figure 4. The TD-SHG of the HfO2/Si samples with various dopant density for (a) n-type Si substrate and (b) p-type Si substrate. The
schematic diagram of the interfacial electric field for (c) n-type Si substrate, (d) lightly doped p-Si substrate and (e) heavily doped p-Si
substrate. (f) The dopant density dependent of initial SHG intensity.

a power law relation with the incident laser power, namely
1/τ is proportional to (Iω)

n (1/τ ∝ (Iω)
n) [37]. The fitted

parameter n is 2.3 (figure 3(f)), indicating that a two-photon
absorption is required to promote electrons from the valence
band of Si to the conduction band of HfO2 at an incident
photon energy of 1.59 eV. These results are consistent with
the band structure depicted in figure 3(b), considering that
the barrier height from the valence band of Si to conduction
band of HfO2 is 2.6 eV [38]. When the laser power is above
200 mW, the TD-SHG first rises in a short time, followed
by a decayed SHG. The subsequent decay of SHG may be
related to the delayed transfer of electrons from the oxide back
to the Si substrate, which compensates the interfacial elec-
tric field [39]. In addition, the laser induced injection of holes
into the oxide layer involving a four-photon process, which

opposes the electron contributions. It could decrease the inter-
facial electric field, resulting the decay of SHG signal [40, 41].

The effect of dopant type/dopant density on the TD-SHG
have been investigated to reveal the powerful ability of SHG
to identify the defects/interface state density as well as the dis-
closing of substrate information (as shown in figure 4). The ini-
tial SHG signal and the dynamics of TD-SHG could be used to
disclose the interfacial electric field due to the dopant type and
dopant density of substrate. The density of the surface charge
trapped at surface state QS increases with the dopant density
(N) based on the relation QS =±

√
2ε0εb |VS|e0N, where ε0,

εb, e0 and VS are the vacuum permittivity, the dielectric con-
stant of material, the elementary charge, and the band bend-
ing related to the dopant type and dopant density of substrate,
respectively. Consequently, the interfacial electric field can be

6
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estimated based on QS, which could be detected by the TD-
SHG [42].

Clearly, the TD-SHG displays a similar trend in the
HfO2/Si (n-type) samples irrespective of the dopant density
(figure 4(a)). Generally, the initial SHG signal increases as the
raise of dopant density. At the low dopant density of Si sub-
strate (Nd ∼ 1014 cm−3) for the HfO2/Si (n-type) sample, the
TD-SHG measured at 200 mW laser irradiation monotonic-
ally increases as the evolution of time, which saturates at∼1 s.
Differently, the TD-SHG increases with the time at a short time
range (t < 0.5 s), then it decays with the time for a long time
period (t > 0.5 s) for the Si substrate with a high donor dens-
ity (Nd ⩾ 1017 cm−3). As for the n-type Si substrate, the laser
induced interfacial electric field is in the same direction of ini-
tial interfacial electric field, which could be used to explain the
observed TD-SHG (figure 4(c)). The decay of SHG signal is
likely to relate to the backflow of electrons, which cancels the
laser induced interfacial electric field.

As for the HfO2/Si (p-type) samples, the initial interfacial
electric field points from theHfO2 film towards the Si substrate
crossing the interface. In the contrary, the laser induced inter-
facial electric field points to the HfO2 film across the inter-
face, which cancels the initial interfacial electric field, res-
ulting the decrease of SHG signal. In fact, the TD-SHG is
much complex compared to the simple model proposed above
(figure 4(d)). The TD-SHG monotonically increases with the
time and saturates after ∼1.5 s for the acceptor density below
∼1014 cm−3. No decay process of SHG signal (no compens-
ation) is observed due to the fast reverse of the interfacial
electric field (opposite compared to initial interfacial electric
field), which may be attributed to a quick compensation pro-
cess (milliseconds) from a high-power laser irradiation as well
as a small initial interfacial electric field (figure 4(d)). In order
to testify the scenario, the TD-SHG of a high acceptor density
of Si substrate (Na ∼ 1018 cm−3) with a large initial interfacial
electric field ismeasured as shown in figure 4(b). The TD-SHG
decreases as the time evolves, verifying that the total interfa-
cial electric field (dominant field) is partially canceled by the
laser induced interfacial electric field (figure 4(e)) [43]. The
saturation of SHG signal is closely related to the balance of
laser induced electron emission and electron-hole recombin-
ation, namely forming a stable interfacial electric field. Since
the SHG can be used to resolved the interfacial electric field,
the initial point of SHG signal (t ∼ 0 s) should correspond to
the initial electric field. Correspondingly, the initial SHG sig-
nal for various samples are shown in figure 4(f), which indic-
ates that the SHG can be an effective way to estimate dopant
density.

4. Conclusion

In conclusion, we employed the SHG technology to charac-
terize the interfacial quality of HfO2/Si structure. The con-
nection is built between the interface state density extracted
from traditional electrical method and SHG intensity from the
fast SHG technology. We also report the measurement that a

two-photon absorption is required to promote electrons from
the valence band of Si to the conduction band of HfO2 at an
incident photon energy of 1.59 eV by detecting internal mul-
tiphoton light emission (IMPE) of SHG, which is inherently
interface sensitive technique. Additionally, we quantified the
sensitivity of initial second harmonic signals to doping con-
centration in both p-doped and n-doped HfO2/Si systems at
various doping concentrations. We attributed the variations in
their TD-SHG shapes to the competitive effect of the electric
field formed by the initial doping-induced charge traps and the
photoexcited electrons. Our work contributes to utilizing effi-
cient, non-destructive, non-contact optical second harmonic
technique as a tool for diagnosing HfO2/Si interface quality
and evaluating substrate doping type and concentration. This
provides potential research ideas and solutions for in-line, in-
situ inspection in semiconductor fabrication lines.
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