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The precessional switching mechanism has governed the magnetic switching in magnetic tunnel junctions (MTJs) in the
sub-nanosecond range, which exponentially increases the switching current density of magnetic random access memory (MRAM).
Thus, there needs to be an alternative switching mechanism with much higher energy efficiency to bring down the switching
current density significantly and make the MRAM compatible with high-speed L1/2—static random access memory (SRAM) at
sub-nanosecond range. Using the recent discovered external electric field (E-field) tunable Ruderman–Kittel–Kasuya–Yosida (RKKY)
phenomena in a synthetic ferrimagnet (E-SFi), we propose a totally different Chrysanthemum-like switching mechanism to realize a
low-energy picosecond writing MRAM design, which breaks the precessional switching mechanism at picosecond region. And our
results show that the critical switching current density can be significantly reduced by one order of magnitude compared to that
of a conventional MTJ design down to 100 ps. In addition, we study the robustness of the asynchronous conditions between the
charge current pulse and the E-field pulse for its practical applications.

Index Terms— Low switching current, magnetic random access memory (MRAM), picosecond magnetic switching,
Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction, synthetic ferrimagnet.

I. INTRODUCTION

BECAUSE of its nonvolatility, high speed, and high den-
sity, magnetic random access memory (MRAM) has

received extensive attention in both research [1]–[6] and
industry [7]–[13]. The core functional element in MRAM is
the magnetic tunnel junctions (MTJs) based on two magnetic
layers sandwiching a tunnel barrier, in which a high tunnel
magnetoresistance ratio (TMR) [14]–[17] is used to read
the data bits and a spin/polarized-charge current is used to
write (spin orbit torque [4], [6], [12], [13] or spin transfer
torque (STT) [18], [19]). However, when the writing process
becomes static random access memory (SRAM) like (<1 ns),
the critical charge current for switching of MRAM increases
exponentially based on precessional switching mechanics
[20], [21], which can even break down the tunnel barrier in
the MTJs [22]. Therefore, the current MRAM designs still
have not been competitive with the high-speed L1/2-SRAM.
In this sense, reducing the switching current density at sub-
nanosecond region has been a continuous challenge for long
time.

Many efforts have been carried out to reduce the high switch
current generally required of current MRAM technology, e.g.,
the voltage-controlled magnetic anisotropy (VCMA) approach
[23]–[35], in which the magnetic anisotropy of free layer can
be changed from perpendicular to in plane by an applied
external electric field, which changes the magnetization from
out of plane to in plane and assists the magnetic switching
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to reduce the required switching current. Recently, it had
been proven that the ground state of a synthetic antiferro-
magnet (e.g., CoFeB/Ru/CoFeB or (Pt/Co)2/Ru/(Co/Pt)2) can
be changed from an antiferromagnetic (AFM) coupling state
to a ferromagnetic (FM) coupling state only by a relative
small external electric field (E-field) [36]–[39] by tuning
the sign of the Ruderman–Kittel–Kasuya–Yosida (RKKY)
interaction [40]–[43]. In this case, an initial AFM coupling
state can be changed to FM coupling state by the electric
field; the magnetizations of the two magnetic layers of the
synthetic AFM structure is aligned, in which one magnetic
layer has been 180◦ reversed. Thus, the E-field-tuned RKKY
interaction impacts the magnetizations of the free layer dif-
ferently from the VCMA using an AFM-FM phase transi-
tion instead of changing of magnetic anisotropy. This novel
E-field-tuned RKKY effect had inspired us to design a new
MTJ structure by replacing the conventional FM-free layer
with an E-SFi-free layer design, which using the E-field-
tuned AFM-to-FM phase transition to assist magnetic switch-
ing [44]. Here, we studied the sub-nanosecond switching
behavior of the E-SFi design with various current/E-field pulse
periods, using a conventional FM-free layer with the same
thermal stability as a benchmark. We found that the switching
mechanism of the E-SFi MRAM design is non-precessional.
The writing energy and critical switching current can be
significantly reduced by the E-field-tuned AFM-FM phase
transition. With detailed study of the dynamics of the spins,
we observed a complex Chrysanthemum-like texture during
the switching process, which breaks the coherent precessional
switching behavior for conventional FM-free layer design in
this time scale. Moreover, the robustness of asynchronous
charge current and E-field pulse was studied for practical
applications.
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Fig. 1. Sketch model of the new STT-MRAM, with E-SFi layers as a
magnetic free layer. An extra electrode (Word Line E) is introduced to
generate the E-field, while the Word Line C is for generating charge current.
An insulating layer is used to decouple E-field and MTJ.

II. MODEL AND METHOD

The E-SFi-free layer design to replace the conventional
FM-free layer can be used for various writing methods such
as the STT or spin orbit torque. In this article, we focused
on investigating the switching behavior of the E-SFi structure
using STT as an example. The proposed E-SFi MRAM design
is shown in Fig. 1, where an extra electrode (Word Line E)
is introduced to generate a small E-field for the AFM-FM
phase transition in E-SFi [36]. An insulating layer is inserted
between Word Line E and Word Line C to prevent the
coupling between the E-field and charge current. The E-field
will not affect the injected charge current from Word Line C .
Here, we should notice that this is not the only way to generate
E-field: one may alternatively use an inserting layer of ferro-
electric materials instead, or other reliable methods. And as
the AFM-FM phase transition in the E-SFi is independent to
the direction of the E-field [36], one can feel free to generate
external E-field in many ways. The sketch model of the MTJ
in our proposed E-SFi-based MRAM is also shown inside
Fig. 1, consisting of a E-SFi-free layer and a reference layer
sandwiching a tunnel barrier (e.g., MgO or Al2O3). In this
case, the storage bits are determined by the order (parallel or
anti-parallel) between the magnetization of the two magnetic
layers near the tunnel barrier layer, because the tunneling
magneto resistance (TMR) in the whole device is dominated
by the magnetic layer close to the tunnel barrier. And because
the direction of the magnetization in the reference layer are
fixed in both reading and writing process, the information of
the E-SFi-free layer is much more important in our study.
Thus, we only use the E-SFi-free layer to do our simulations
with injecting polarized charge currents to reproduce the STT
effect.

To investigate the spin dynamics of the E-SFi, micromag-
netic simulations are carried out using the Object-Oriented
Micromagnetic Framework [45] code, and we use the similar
CoFeB/Ru/CoFeB structure from the [36] as the E-SFi for
the numerical calculations. In detail, we set up a nanopillar
with diameter d = 50 nm, and thickness t = 2.8 nm,
which consists of two CoFeB layers (tbottom = 1.2 nm and
ttop = 0.8 nm for the bottom and top layers, respectively) and
one Ru (tRu = 0.8 nm) layer. The E-SFi is discretized into a
lattice of rectangular cells with size of 2 nm×2 nm×0.4 nm.

As we know, the dynamics of the spins are governed by
the Landau–Lifshitz–Gilbert–Slonczewski (LLGS) [46]–[49]
equation, which reads

dm
dτ

= −γ m × Heff + αm × dm
dτ

+ �STT (1)

where m is the direction of the magnetization, τ the time,
γ the gyromagnetic ratio, Heff the effective magnetic field,
and the damping constant α = 0.01 for used CoFeB [50], [51].
In addition, the STT �STT generally comes from the injecting
polarized charge current, written as

�STT = γβ�(m × mp × m) − γβ� �m × mp (2)

with β = (h̄J/(|e|μ0t Ms )), where h̄ is the reduced Planck
constant, J the charge current density, e the electron charge,
μ0 the vacuum permeability, t the thickness of E-SFi-free
layer, and the saturation magnetization of magnetic CoFeB
layer in the E-SFi-free layer Ms = 1.26 × 106 A/m [52], and

� = P�2

(�2 + 1) + (�2 − 1)(m · mp)
(3)

where P = 0.93 is the polarization of the charge current with
polarized direction mp, and we use � = 1 to remove the
dependence of � on m · mp to make the STT isotropic. And
as the ratio of the field-like STT to Slonczewski STT ��/� in
MgO-based MTJs varies from 0.1 to 0.3 [53]–[56], we set the
secondary spin transfer term �� = 0.07 to have an ordinary
ratio � �/� = 0.15.

Besides the general parameters of the materials in the
E-SFi as shown above, the total energy of the E-SFi-free
layer includes several parts, e.g., the Heisenberg exchange
energy Eex with the Heisenberg exchange coefficients A =
3 × 10−13 J/cm from CoFeB [57], [58], the demagnetizing
energy Ede, the anisotropy energy Ean = K V with the effective
magnetic anisotropy constants K and volume V of the E-SFi.
However, we know that the magnetic anisotropy in MgO-
based MTJs mainly comes from the interface, thus we only
use a typical interface magnetic anisotropy constant in our
calculations, which are K i

bott = 1.44 × 10−7 J/cm2 and K i
top =

0.96 × 10−7 J/cm2 [52] for bottom layer and top layer of
the E-SFi-free layer, respectively. Here, the different interface
magnetic anisotropy constants are intentionally chosen to make
the bottom layer of the E-SFi more stable than the top
layer of the E-SFi to store data bits. In this design, the
thermal stability (	) of the E-SFi can be obtained using the
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well-known formula [52], [59]

	 = K i
bott

/
tbott − μ0 M2

s

/
2

kBT
Vbott

+ K i
top

/
ttop − μ0 M2

s

/
2

kBT
Vtop (4)

where Vbott and Vtop are the volume of the bottom layer and
top layer of the E-SFi, respectively, kB is the Boltzmann’s
constant, and T is the temperature. Therefore, we have
	 � 199 at room temperature T = 300 K, which is much
more than 	 = 40 ∼ 75 needed for ten years retention of the
data [60]–[63].

In addition, for CoFeB/Ru/CoFeB structure, it has been
demonstrated that the AFM coupling state can change to FM
coupling state with a small estimated electric field by applying
a small voltage φ0 � 2 V [36]. Following Thomas–Fermi
screening theory, the potential along the z-axis (perpendic-
ular to the interfaces) is φ(z) = φ0[e−z/L D − e−(d−z)/L D ],
where φ0 is the gating voltage on one side of the thin
film, L D is the Debye length, and d is the thickness of the
thin film. And the corresponding E-field will be E(z) =
−∂φ(z)/∂z. With the parameters from [36], in which we have
the structure of the sample as CoFeB (1.5 nm)/Ru (1.0 nm)/
CoFeB (1.5 nm), therefore the thickness d = 4 nm. However,
as we do not find the experimental L D of the CoFeB and
Ru, we use the Debye length of an Au nanoparticle [64]
with a value of L D = 1 nm as a typical number for both
CoFeB and Ru, and then the E-filed around the interfaces
will be E � 0.61 V/nm, which is quite close to that from
a linear chemical potential approximation [36], where the
E-field is E = φ0/d = 0.5 V/nm. In our approach, this
E-field-controlled AFM-FM phase transition can be modeled
by adding an extra energy term in the calculations and reads

ERKKY =
∫

i∈S
Ei dV (5)

where

Ei =
∑
j∈S

σ(1 − mi · m j)

δi j
(6)

is the density of the RKKY exchange energy of surface
cell i relative to all matching surface cells j around the
interfaces (S), δi j is the corresponding discretization cell size,
and σ represents the RKKY coefficient between the two
magnetic layers. In this sense, the AFM to FM phase transition
by the electric field in E-SFi can be governed by changing the
sign of σ .

III. RESULTS AND ANALYSIS

In this work, we mainly investigated the magnetic switching
of the E-SFi, in which the critical switching current density
Jsw and charge current pulse width TJ are the most important
parameters. The inset of Fig. 2 shows a sketch of the charge
current pulse and E-field pulse for the E-SFi, and we fixed
the E-field pulse width TE = 0.5 TJ and put the E-field
pulse in the middle of the charge current pulse for this case.
Additionally, we marked four typical time points τi,i∈{1,2,3,4},

Fig. 2. Critical switching current density Jsw versus the current pulse width
TJ for the conventional free layer and the E-SFi-free layer. The inset shows the
sketch of the applied charge current pulse J with pulse width TJ for both the
conventional free layer and E-SFi-free layer, and the corresponding external
E-field pulse with pulse width TE = 0.5 TJ for the E-SFi-free layer only.

where the charge current and E-field pulse are turned on and
off, respectively. For comparison, a conventional FM-free layer
switched only by a polarized current was calculated with a
similar thermal stability factor 	 � 199.

The calculated Jsw versus TJ is plotted in Fig. 2 for both
the conventional FM and E-SFi-free layers. The Jsw for the
conventional FM-free layer increases exponentially, which
is determined by precessional switching mechanics [20], as
expected from a previous publication [21]. However, for the
E-SFi, the Jsw decreases by almost one order of magnitude at
TJ = 0.1 ns, and still ∼3.6 times smaller at TJ = 0.75 ns. And
according to [22], the writing voltage increases exponentially
for conventional STT-MRAM and increases three times from
breakdown-safe [65] ∼0.5 V at TJ = 10 ns to ∼1.5 V at TJ =
0.75 ns, which is close to/more than the breakdown voltage
(1.26–1.40 V at RA = 5 �μm2) of the tunnel barrier (∼1 nm)
of the MTJs from [66]. In this sense, the ∼3.6 times reduction
of the Jsw at TJ = 0.75 ns for E-SFi-free layer can make the
writing voltage back to a breakdown-safe value (∼0.42 V),
therefore the E-SFi MRAM could work safely at sub-1-ns
region, which makes it compatible with the L1/2-SRAM at
the sub-7-nm technology node [8], [67].

To understand the underlying physical origin of the E-field-
assisted ultrafast switching in the E-SFi, we studied the time-
dependent multiple energy terms as shown in Fig. 3(a). We can
see that, the RKKY interaction energy (ERKKY) exhibits a
sharp jump when the E-field is turned on (τ2), ahead of the
Heisenberg exchange energy (Eex) and dominating the sharp
increase of the total energy (Etot). It is well known that,
in conventional MRAM, there is an energy barrier between
the two spin states, up and down, which determines how
much energy is needed to switch the magnetization. In which,
only the applied polarized charge current will supply enough
angular momentum to overcome the energy barrier with a
precessional switching behavior [20], [21]. However, for the
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Fig. 3. (a) Calculated energies versus time (τ ) for the E-SFi-free layer with TJ = 1 ns, where Etot is the total energy, Eex is the Heisenberg
exchange energy, ERKKY is the RKKY interaction energy. (b) Toy model of the ultrafast switching mechanism of the E-SFi under the applied E-field.
(c) and (d) are the corresponding spin textures of the top and bottom layers of the E-SFi at 25 ps after turn-on time of the E-field (τ2).

E-SFi, when the E-field is on, the sign of the RKKY inter-
action changes, and Etot increases suddenly by a value of
twice of the ERKKY without E-field according to (6), and
verified by the calculations as shown in Fig. 3(a). This extra
energy excites the magnetization from one ground state to
an excited state (with energy level Ees) that is much larger
than the energy barrier Eb of a conventional FM-free layer
with identical 	. When it comes back to the ground states
(spin up or down), only a small polarized charge current is
needed to guide the magnetization to the expected state using
its current direction. In this sense, the direction-guiding Jsw

in the E-SFi can be significantly smaller than the energy-
barrier-overcoming Jsw in the conventional FM-free layer. This
E-SFi switching mechanism can be represented by a toy
model as shown in Fig. 3(b). We also investigated the detailed
spin textures of the E-SFi during switching, we observed a
complex Chrysanthemum-like spin structure only 25 ps after
turning on the E-field as shown in Fig. 3(c) and (d). The
Chrysanthemum-like structures are very different from the
precessional switching mode, in which the spins are uniform
at all times because of the Heisenberg exchange interaction.
This is the underlying physical origin of the E-SFi switching
that does not obey the precessional switching mechanism.

Thus, the whole switching process of the E-SFi can be
illustrated as shown in Fig. 4. It can be seen that the E-SFi

layer has an initial AFM state with spin up in the bottom
layer and spin down in the top layer. And the AFM state
keeps unchanged until applying the external E-field at τ2.
Then, only 25 ps after turning on the E-field, both the spin
textures of the bottom layer and top layer are destroyed and
become Chrysanthemum-like. From τ2 to τ3, the spins start to
evolve to FM state under the control of the E-field-induced
AFM-FM phase transition. Moreover, with the help of the
polarized charge current, most of the spins are forced to
point to −z-direction (spin down, blue color). Therefore, when
turning off the E-field at τ3, the spins will evolve to AFM state
again but with spin down in bottom layer and spin up in top
layer. In this sense, all the spins inside the E-SFi are switched
at τ5 as shown in Fig. 4.

In addition, we studied the asynchronous conditions
between the charge current pulse and the E-field pulse. First,
we changed the turn-off time of the E-field τ3 behind the
turn-off time of the charge current τ4, as shown in the inset of
Fig. 5(a). The corresponding results of the Jsw versus E-field
lagging time 	Tlag = τ3−τ4 for various current pulse width TJ

are plotted in Fig. 5(a), in which we found Jsw is insensitive to
the 	Tlag (up to 10 ns) for various charge current pulsewidths
TJ (0.1 ∼ 5.0 ns). These results can also be understood within
the framework of the previous toy model, when E-field is on
at τ2, the ground state of the E-SFi jump to a high energy

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 05,2021 at 01:44:58 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: LOW-ENERGY PICOSECOND MAGNETIC SWITCHING 4200407

Fig. 4. Whole time-evolution process of the spins in both the top layer and bottom layer of the E-SFi with TJ = 1 ns, where τi,i∈{1,2,3,4,5} labels the
corresponding time points of the current and E-field pulses.

Fig. 5. Critical switching current density Jsw with asynchronous charge current and E-field pulses, where the insets are the corresponding sketches of the
detailed parameters of the current and E-field pulses; e.g., (a) and (b) plot Jsw versus the lagging time and advance time between the E-field and the charge
current for various TJ .

level (Ees). Within a short time 	τ (e.g., ∼25 ps in Fig. 3
with TJ = 1.0 ns) after τ2, the magnetization pattern of the
E-SFi changes from uniform to a complex chrysanthemum-
like texture as shown in Fig. 3(c) and (d). The evolution of
this texture is governed by the small polarized charge current
Jsw, but not strongly dependent on the remaining E-field, as
shown by the rapid drop of the ERKKY around τ2 in Fig. 3(a).
Thus, the low-energy ultrafast switching by the small Jsw is
robust when the pulse width of the E-field is longer than its
corresponding 	τ .

Similarly, as shown in the inset of Fig. 5(b), we changed the
turn-on time of the E-field τ2 ahead of the turn-on time of the
charge current τ1, and define 	Tadv = τ1 − τ2. The calculated
results are plotted in Fig. 5(b), in which we found Jsw increases
with increasing 	Tadv. This is because when the E-field turns
on ahead of the charge current, the E-SFi will change from an
AFM coupling state to Chrysanthemum-like state suddenly and
will start to evolve to an FM coupling state before the polarized
charge current provides any contribution. For example, for

a long enough Tadv, the E-SFi will evolve to a FM coupling
state completely before the turn-on time of the polarized
charge current, making it identical to the conventional FM-free
layer design. Then the energy barrier will be overcome by the
polarized charge current only. For MRAM to be a candidate
to replace L1/2–SRAM at the sub-7 nm technology node,
it is essential to have a small and breakdown-safe critical
switching current at sub-nanosecond range. Our study shows
that this goal can be achieved with this novel E-SFi design
by turning on the E-field pulse simultaneously or after the
polarized charge current and the turn-off time of the E-field
is not critical.

The robustness of the switching in the E-SFi is very impor-
tant for practical applications. Thus, we studied its dependence
on various parameters as shown in Fig. 6, with which we
concluded that the switching current of the E-SFi-free layer
design is quite robust against the thermal stability, disorder,
and turn on time of the charge and E-field pulses. This
can be also understood by the toy model in Fig. 3, as the
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Fig. 6. Robustness of the switching current against various parameters at
TJ = 1 ns. (a) Jsw versus thermal stability 	 by multiplying the same factor to
both K i

bott and K i
top. (b) Jsw versus disorder, where we remove the magnetic

moment of one cell with the size of 2 nm × 2 nm × 0.4 nm to simulate
a nonmagnetic disorder for three typical locations: center, middle, and edge,
which are sketched by the yellow circulars and the position of the data points.
“o” is for the results without disorder. (c) Jsw versus turn on time 	t for
the current and E-field pulses, the inset map shows the sketch of the applied
charge and E-field pulses. The blue dash lines represent the switching current
of the conventional FM-free layer at TJ = 1 ns from Fig. 2 for comparison.

E-field-induced ground state excitation is independent of the
above parameters, and the high energy-level Ees of the excited
state makes the corresponding finite disturbance irreverent.
Thus, we have strong confidence that our design has a great
possibility of implementation in the future.

IV. CONCLUSION

In summary, the magnetic switching dynamics in a novel
E-SFi-free layer design is investigated by micromagnetic sim-
ulations in this article. The critical switching current density
can be reduced by one order of magnitude at 100 ps, making it
potential candidate to replace L1/2-SRAM. To understand this
ultrafast low-energy magnetic switching, the energy evolution
has been studied and a toy model has been proposed. In this
toy model the small E-field is used to excite the magnetic
state of E-SFi from a ground state to an energy level Ees that
is much higher than the conventional energy barrier Eb, and
the small polarized charge current is only needed to guide the
magnetization to the expected state.

For the possible practical use of the E-SFi MRAMs,
we investigated the effects of asynchronous charge current
and E-field pulses. We found that, to have ultralow critical
switching current, the E-field should not be applied ahead
of the polarized charge current. Fortunately, the small critical
switching current density is quite robust when the turn-off
time of the E-field pulse is lagged the turn-off time of charge
current pulse (within 10 ns in our calculations). Thus, the best
strategy for applying the E-field is to turn on the E-field

slightly later than the charge current pulse and to maintain
the E-field as long as desired.
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