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We report the implementation of the fully relativistic exact muffin-tin orbital (EMTO) method for both
first-principles electronic structure and quantum transport simulation of magnetic and nonmagnetic device
materials. We consider a device-material system containing the inevitable atomic disorders in contact with
different electrode materials. The Kohn-Sham Dirac equations for both cases with and without spin polarization
are self-consistently solved for the central device-material system with the Green’s function method. The
fully relativistic charge-current density, conventional Pauli spin current density, and transmission coefficient
are formulated with the nonequilibrium Green’s function technique. To treat the influence of disordered
defects/impurities, we combine the nonequilibrium Green’s function in the Keldysh space with the coherent
potential approximation, and account for the multiple disorder scattering by vertex corrections to a two-Green’s-
function correlator to calculate the disorder-averaged charge and spin current density. As a demonstration of the
present implementation, we calculate the electronic structure of the bulk Pt, Co, and HgTe and Rashba-type
surface states of Au and Ag/Ag2Bi1 alloy surfaces. We find that the EMTO electronic structures of all
the calculated systems agree well with the results of the projector-augmented wave method. The electronic
charge and spin transport implementations are tested with perfect and disordered Cu/Co/Pt/Cu junctions.
The important effects of interface and atomic disorders are illustrated for the spin transport in the presence
of relativistic effects. The implementation of the fully relativistic EMTO-based device-material simulation
provides an important tool for analyzing both the charge and spin transport through nanostructures and materials,
significantly extending the capability of first-principles material design for spintronic device applications.
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I. INTRODUCTION

The relativistic effect is essential for numerous physical
properties of materials and devices [1,2]. Especially, as an
important relativistic effect, the spin-orbit interaction (SOI),
originating from electrons’ movement in the intrinsic electric
field of materials, gives rise to many important phenomena of
quantum materials and spintronic device applications, includ-
ing magnetocrystalline anisotropy [3,4], spin-orbit torque [5],
the spin Hall effect [5], the anomalous Hall effect [6], topolog-
ical materials [7,8], and spin field-effect transistors [9]. Devel-
oping first-principles relativistic device-level material simula-
tion is thus important for understanding the role of different
materials, interfaces, and disordered defects on the relativistic
effect based phenomena and device functionalities. Presently,
in most implementations of Kohn-Sham density functional
theory (KSDFT) [10,11] based first-principles methods, the
SOI is included, to account for the relativistic effect, as a
perturbation in the nonrelativistic limit, for example in the

*These two authors contributed equally to this work.
†keyq@shanghaitech.edu.cn

Vienna ab initio simulation package (VASP) [12], Siesta
package [13], the full potential linearized muffin-tin orbital
method (LMTO) [14], and linearized augmented plane wave
method [15]. However, this type of perturbation approach has
found difficulties for effectively treating atomic disorders and
for the elements with orbital moment comparable to the spin
moment. The fully relativistic implementation of DFT can be
realized by directly solving the Kohn-Sham Dirac equation,
for example, the KKR [16], LMTO in the atomic sphere
approximation [17], and exact muffin-tin orbital (EMTO) [18]
methods. However, most of the implementations are only for
bulk-type materials simulation, not for quantum transport cal-
culation of device materials that features the nonequilibrium,
open-boundary conditions and large system size.

The EMTO method, as the third generation of MTO first
proposed by Andersen and coworkers [19–22], is highly
accurate and efficient for first-principles materials simula-
tion. EMTO features the localized, minimal, and complete
basis set, possessing great potential for solving challenges
in device-materials simulation. Vitos et al. and Pourovskii
et al. made the first successful implementation of the
respective scalar relativistic (SR) EMTO [23–25] and fully
relativistic (FR) EMTO [18] for first-principles bulk-materials
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simulation. It has been demonstrated that the results of the
first-principles EMTO method present very good agreement
with the all-electron full-potential linear augmented wave
method for different bulk systems [23]. Very recently, some
of the authors have reported the successful implementation
of the SR-EMTO method for quantum transport simulation
of device-level materials and showed that the EMTO results
agree very well with the projector-augmented wave method
and experimental measurements for device materials [26].

In this work, we report our implementation of the
FR-EMTO method for fully relativistic first-principles sim-
ulation of electron and spin transport through magnetic and
nonmagnetic device materials, as an important extension of
the capability of EMTO-based first-principles device simula-
tion. We combine the FR-EMTO method with the Keldysh
nonequilibrium Green’s function (NEGF) technique to formu-
late the electronic charge and spin transport properties for a
device in contact with different electrodes. To treat the disor-
der scattering, the coherent potential approximation (CPA) is
combined with the NEGF method and the nonequilibrium ver-
tex correction is included to calculate the disorder-averaged
charge and spin current. As a demonstration of FR-EMTO
for device-materials simulation, we calculate the electronic
structure of bulk Co, Pt, and HgTe and Rashba-type surface
states for Au and Ag/Ag2Bi1 surfaces and the charge and spin
transport through the perfect and disordered Cu/Co/Pt/Cu
junctions, and compare our results with the PAW and SR-
EMTO calculations and experimental measurements.

The rest of the paper is organized as follows: Section II pro-
vides a brief review of the basic formalism of the FR-EMTO
method. Section III presents the NEGF method in Keldysh
space with the FR-EMTO method for the electronic structure
and quantum transport calculation; in Sec. IV, the coherent
potential approximation is combined with the Keldysh NEGF
to do the disorder average, accounting for multiple scatter-
ing by disordered defects inevitable in realistic devices; in
Sec. V, we derive the relativistic electron charge current and
Pauli spin current formula with the NEGF technique for both
ordered and disordered devices. In Sec. VI, we present some
information about the self-consistent implementation and nu-
merical results. Finally, we conclude our work in Sec. VII and
provide more information in Appendices A, B, C, and D.

II. FULLY RELATIVISTIC EXACT MUFFIN-TIN
ORBITAL METHOD

We consider the Kohn-Sham Dirac equation for a magnetic
system,

Ĥ = c�α · �p + (β − I4)mc2 + V (�r) + β �� · �B(�r) (1)

and

�α =
(

0 �σ
�σ 0

)
, β =

(
I2 0
0 −I2

)
, �� =

(
�σ 0
0 �σ

)
, (2)

where σ is the Pauli matrix. In the muffin-tin approximation,
the effective full potential is approximated as

V (�r) ≈ Vmt (�r) ≡ Vmtz +
∑

R

[VR(rR) − Vmtz], (3)

and the magnetic field is approximated as

�B(�r) ≈ �Bmt (�r) ≡
∑

R

�BR(rR), (4)

where VR(rR) is a spherical potential centered on lattice
site R and Vmtz is a constant potential (we use the notation
�rR = �r − �R, and rR = |�rR|). We can solve the single-electron
Dirac equation with the muffin-tin potential, by expanding the
Kohn-Sham orbital in terms of EMTO as

� j (�r) =
∑
R�

�a
R�(ε j, �rR)υa

R�, j . (5)

Here the EMTO, as an important first-principles method,
allows large overlapping potential spheres that provide a
more accurate description of the potential compared to the
conventional approximation. Moreover, the EMTO method
treats the interstitial and atomic regions on the same footing,
and thus can provide important accuracy for simulating dis-
ordered systems and interfaces/surfaces of various materials.
Here, we provide a brief introduction to the FR-EMTO for
solving the Dirac equation (1) with spin polarization. (For
more information about FR-EMTO, please refer to Ref. [18]
implemented for bulk materials, and Ref. [27].)

The energy-dependent smooth FR-EMTO is composed of
three parts as follows:

�a
R�(ε, �rR) = φa

R� − ϕa
R� + ψa

R�, (6)

including the four-component partial wave φa
R�, free electron

solution ϕa
R�, and the screened spherical wave (SSW) ψa

R�,
where the relativistic quantum number � = κμ. Here, the
superscript a denotes the screening representation. The partial
wave φa

R� is defined inside each overlapping potential sphere
(sR) as [27]

φa
R�(E , �rR) =

∑
λ=κ,−κ−1

φa
RλμNa,μ

R,λκ , (7)

where φa
Rλμ is solved from the coupled radial Dirac equation

for a general magnetic system and Na,μ
R is the normalization

matrix. The SSW ψa
R� with pure spin-spherical wave, serving

as the envelope function, satisfies the interstitial Dirac equa-
tion with constant potential, and can be generally expanded
around other sites R′ as [16,18]

ψa
R�(κ2, �rR) = f a

R�(κ2, �rR)δRR′

−
∑
R′�′

ga
R′�′ (κ2, �rR′ )Sa

R′�′,R�(κ2), (8)

where f a
R� and ga

R� are the respective head and tail functions
and Sa is the screened slope matrix which is obtained by
the general screening technique of the Methfessel formulation
[28] (namely, by imposing proper boundary conditions on a
set of nonoverlapping screening spheres of radius aR so that
it equals pure spin-spherical harmonic waves on its own a
sphere and vanishes on and inside other a spheres) [19–25].
It has been shown that by carefully choosing boundary con-
ditions on the screening spheres aR, the fully relativistic
Sa

R′�′,R�(κ2) can be connected to the nonrelativistic Sa
R′L′,RL by
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FIG. 1. Schematic illustration of two-probe device containing a
central device region contacting the left and right electrodes.

[18]

Sa
R′�′,R�(k2) =

∑
s=±1/2

c

(
l ′ j′

1

2
; μ′ − s, s

)

× Sa
R′L′,RL(k2)c

(
l j

1

2
; μ − s, s

)
, (9)

where c(l j 1
2 ; μ − s, s) is the Clebsch-Gordan coefficient, pro-

viding an important basis for developing FR-EMTO first-
principles methods from the implementation of SR-EMTO. To
make the FR-EMTO smooth, the free electron solution ϕa

R� is
introduced in the region between the screening and potential
spheres so that FR-EMTO is continuous at both aR and sR, and
differentiable at sR [19–25],

ϕa
R� = f a

R� −
∑

λ=κ,−κ−1

ga
RλμDa,μ

R,λκ , (10)

where the matrix elements of Da
R(ε) are obtained by satisfying

the boundary conditions.
Similarly to the SR-EMTO, the overlap matrix of the

FR-EMTO, namely 〈�a|�a〉, can be approximated in the
threefold way as [19–22]

O = 〈�a|�a〉 = 〈φa|φa〉 − 〈ϕa|ϕa〉 + 〈ψa|ψa〉
= −aḊa(ε) + aṠa(ε) = K̇a(ε). (11)

Here K = aSa − aDa is called the kink matrix. Moreover, the
FR-EMTO matrix 〈�a|ε − Ĥ |�a〉 in the threefold approxima-
tion can be obtained as [19–22]

〈�a|ε − Ĥ |�a〉 = aSa(ε) − aDa(ε) = Ka(ε). (12)

It is clear that the Ka is as short-ranged as the screened slope
matrix Sa, providing the high efficiency for the computation
with EMTO.

III. FR-EMTO-BASED KELDYSH NEGF METHOD
FOR DEVICE MATERIALS

As shown in Fig. 1, we consider a specific device-material
system, containing a central device region sandwiched by
different semi-infinite electrodes. In the operating state, the
current flows through the central device region, making the
device at the nonequilibrium state. As is known, the most rig-
orous theoretical framework for treating the nonequilibrium
quantum transport problem is the nonequilibrium Green’s
function (NEGF) theory. The NEGF theory provides a gen-
eral solution to the complex nonequilibrium problem with

various scattering mechanisms including electron-phonon and
random impurity scattering [29–35]. Here, we introduce the
key ideas of the NEGF theory to combine with the FR-EMTO
method for realizing the first-principles fully relativistic quan-
tum transport simulation.

In the Keldysh NEGF theory, the central quantity is the
contour-ordered Green’s function defined on the Keldysh
closed time contour,

G(�r, t ; �r′, t ′) = −i〈�|Tc[ψH(�r, t )ψ†
H(�r′, t ′)]|�〉, (13)

where Tc denotes the contour-ordered operator, and ψH and
ψ

†
H are the respective elimination and creation field operators

defined in the Heisenberg picture. (Note that in the rest of
the paper, we use the bold font to denote the contour-ordered
quantities.) In the above equation, the time evolution starts
from the remote past, passes through t and t ′, and finally
returns to the remote past again. Importantly, the contour-
ordered GF in Eq. (13) features the same mathematical struc-
ture as the time-ordered equilibrium GF defined on the real-
time axis −∞ → +∞ [30]. The contour-ordered GF thus
satisfies the Dyson equation in a compact form, providing the
basis for general applications,

G = G0 + G0�G, (14)

with the self-energy � accounting for the effects of complex
interactions and G0 denoting the GF of unperturbed H0.
It should be emphasized that the contour-ordered GF not
only directly relates to physical observables, but also makes
the complex nonequilibrium quantum problem tractable. For
practical applications, we introduce the Keldysh rotation tech-
nique [36], namely the 2 × 2 Keldysh real-time matrix repre-
sentation of the contour-ordered quantity, as an alternative to
the analytical continuation method (Langreth theorem) [29],

G =
(

GA 0
GK GR

)
, (15)

where GR/A are the retarded and advanced GFs, and GK is
the Keldysh GF. With the GFs GR/A/K , other real-time GFs
or Craig representation [37] can be obtained by their linear
combination or simple unitary transformation [38], such as
the lesser GF G< = 1

2 (GK + GA − GR).
For the device in Fig. 1, only the GFs or properties of

the central device region are of interest, while the left and
right electrodes, serving as the reservoirs, are assumed in
equilibrium state, and can be treated with bulk calculations
separately. As a direct application of the NEGF theory, the
contour-ordered GF of the central device GCC can be straight-
forwardly obtained by treating the electrodes with the self-
energies, namely

GCC = GCC,0 + GCC,0�ld GCC, (16)

where GCC,0 is the GF of the isolated central part and the elec-
trode self-energy �ld = �ld,L + �ld,R describes the coupling
of the semi-infinite left/right electrode to the central region.
Within the Keldysh representation, in the FR-EMTO method,
GCC can be rewritten as (after transforming to the energy
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domain)

GCC = (KCC − �ld )−1, (17)

where

KCC =
(

KA
CC 0

KK
CC KR

CC

)
, �ld =

(
�A

ld 0
�K

ld �R
ld

)
. (18)

Here KR/A
CC = K±

CC and KK
CC = 0 due to the Hermi-

tian kink matrix; �K
ld = (2 fL − 1)(�A

ld,L − �R
ld,L ) + (2 fR −

1)(�A
ld,R − �R

ld,R) due to the fact that semi-infinite electrodes
are in the equilibrium state ( fL/R are the Fermi function of
electrodes). Finally, with Eqs. (17) and (18), we can explicitly
write, for each component,

GR/A
CC = (

KCC − �
R/A
ld

)−1
, (19a)

GK
CC = GR

CC�K
ld GA

CC . (19b)

With the GFs GR/A/K
CC , the device physical properties, includ-

ing charge density, charge current, and Pauli spin current, can
be calculated with FR-EMTO.

It should be mentioned that for solving the device at
equilibrium, one only needs to compute Eq. (19a) and use the
fluctuation dissipation theorem, namely G< = (GA − GR)
(GA = GR,+), to calculate the equilibrium electronic struc-
ture of the device materials. One can also check the fact
that, with Eq. (19b), the lesser G< restores the fluctuation-
dissipation theorem to equilibrium, which is the basis for
equilibrium calculation. In our implementation, we divide the
two-probe device system into principal layers along the trans-
port direction (which is large enough so that the kink matrix
become tridiagonal) and apply the recursive Green’s function
technique [26,39]. For other information for computing the
Green’s function of the central device region, such as the com-
putation of electrode self-energies and on-layer and off-layer
blocks of GFs, please refer to the previous implementation of
SR-EMTO for device materials in Ref. [26].

IV. COHERENT POTENTIAL APPROXIMATION IN
KELDYSH SPACE FOR EMTO METHOD

Here we consider the realistic system containing substitu-
tional disorders, namely AxB1−x, with different chemical oc-
cupants on the underlying lattice. For such disordered system,
the kink matrix elements in EMTO can be written as, for a
specific disorder configuration,

Ka
R,R′ = −

∑
Q

η
Q
R aRDa,Q

R δR,R′ + aRSa
R,R′ , (20)

where the occupation operator η
Q
R = 1 if a Q atom is at the

R site, and η
Q
R = 0 otherwise. The disordered quantity is DQ

R
due to the randomly distributed atom Q, and the slope matrix
is independent of disorder, presenting a site-diagonal disorder
problem in the FR-EMTO method. As an important result, the
well-established conventional coherent potential approxima-
tion (CPA) [40,41] can be combined with the EMTO method
to do the disorder average from first principles [18,42]. The
CPA obtains the averaged GF of a disordered system by self-
consistently constructing an effective medium with transla-
tional invariance. Presently, with the EMTO method, CPA has

been first implemented by Vitos et al. with important applica-
tions for bulk materials [25,42–47] and by some of the authors
for quantum transport simulation of device materials [26].
Here, we present the generalized CPA in Keldysh space within
the FR-EMTO method for first-principles fully relativistic
quantum transport simulation of device materials. Differently
from previous implementations, we here consider the disorder
average of the contour-ordered GF for a disordered device
material system at nonequilibrium.

To simplify the situation, we only consider the disorders
inside the central device region; namely the electrode self-
energies in Eq. (19) are independent of the disorders. To
describe the averaged contour-ordered GF, we can introduce
an effective Keldysh Da

R function in 2 × 2 matrix form for all
the disordered sites

Da
R =

(
Da,A

R 0

Da,K
R Da,R

R

)
, Da =

∑
R

Da
R (21)

(note that Da,K
R 
= 0). Therefore, we have the averaged

contour-ordered GF, for the central device,

Ga
CC = {aC

[
Sa

CC − Da
C

]− �a
ld

}−1
. (22)

As a result, by applying the Dyson equation, namely Eq. (14),
the Green’s function Ga

CC of a specific disorder configuration
can be expressed as Ga

CC = Ga
CC + Ga

CCTCCGa
CC by defining

TCC = �(1 − Ga
CC�)−1 with �R = aRl [−Da

R + Da
R]. (Note

that the Keldysh matrix features a lower triangular matrix;
the matrix addition, multiplication, and inverse operations on
Keldysh matrices do not change the mathematical structure.)

Here the Keldysh matrix T = (T A 0
T K T R) accounts for the total

effect of disorders at nonequilibrium. Then, by taking the
disorder average to Ga

CC , the CPA self-consistent condition
〈TCC〉 = 0 is obtained to solve for the effective medium Da

C .
To make CPA practical, according to the conventional CPA,
the single-site approximation (SSA) is usually introduced to
reduce the CPA condition to a single-site equation [38,40,41],

〈tR〉 =
∑

Q

cQ
R tQ

R = 0, (23)

where the single-site scatter in Keldysh space is defined as
tR = �R(1 − Ga�R)−1. According to the definition of the
Keldysh matrix, we can find

tR/A,Q
R = �

R/A
R

(
1 − GR/A�

R/A
R

)−1
,

tK,Q
R = tR,Q

R GKtA,Q
R − (1 + tR,Q

R GR)DK
R

(
1 + GAtA,Q

R

)
.

With the SSA, the single-site effective quantities Da,R/A/K
R for

each site can be efficiently solved to obtain the total coherent
medium by Da =∑R Da

R. The SSA neglects all nonlocal
correlation of disorder scattering and local environment ef-
fects, presenting the major limitation for the CPA. However,
we note that the recent development of the dynamical cluster
approximation and the dual-fermion technique can provide an
effective way to include some nonlocal corrections and treat
the effects of short-range order of disorders [48,49].

After the CPA self-consistency is achieved, we obtain the
averaged GF G. Moreover, in many applications, condition-
ally averaged GFs, namely GQ

RR and GQQ′
RR′ , are required, for
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example, the electronic structure self-consistency and many
physical properties including the charge and spin current den-
sity (see Sec. V). The conditionally averaged contour-ordered
GF can be defined with the occupation operator as follows:

GQ
RR = 1

cQ
R

〈
η

Q
R G
〉
RR

,

GQQ′
RR′ = 1

cQ
R c′Q′

R

〈
η

Q
R Gη

Q′
R′
〉
RR′ , (R 
= R′). (24)

As shown in Appendix A with SSA, the quantities GQ
RR and

GQQ′
RR′ can be obtained by

GQ
RR = (

G + GtQ
RG
)

RR,

GQQ′
RR′ = [(

1 + GtQ
R

)
G
(
1 + t ′Q′

R G
)]

RR′ .

(25)

With the above relations, one can explicitly obtain the GFs
GR/A/K,Q

RR in Eq. (A10) and GR/A/K,QQ′
RR′ in Eq. (A11), and finally

all the real-time GFs can be thus obtained, such as the lesser
GF,

G<,Q/QQ′
RR′ = 1

2

(
GA,Q/QQ′

RR′ − GR,Q/QQ′
RR′ + GK,Q/QQ′

RR′
)
. (26)

V. NEGF-BASED FULLY RELATIVISTIC
QUANTUM TRANSPORT

In the following, we introduce the formalism of the elec-
tron charge and Pauli-spin transport with the FR-EMTO
method in combination with the NEGF technique for the fully
relativistic quantum transport simulation.

A. Electron charge transport and transmission coefficient

As known, the charge current directly describes the time
variance of charge, namely e d

dt (�†�). As shown in Ap-
pendix B, e d

dt (�†�) = −∇ · �J (�r), namely the continuity
equation, where the fully relativistic electron-charge cur-
rent density can be given by �J (�r) = e[c�†(�r)�α�(�r)] =
ecTr[�α�(�r′)�†(�r′)]�r=�r′ . Here c�α = i

h̄ [Ĥ , �r] is the velocity op-
erator in FR quantum mechanics, and the charge is conserved
and relativistically invariant. With the NEGF method, the
real-space electron-charge current density can be calculated
as (in the energy domain)

J (E , �r) = ecTr[�αG<(E , �r, �r′)]�r=�r′

= ecTr

[ ∑
R�,R′�′

G<
R′�′,R��R′�′ (�r)�†

R�(�r)�α
]

= ec
∑

R�,R′�′
G<

R′�′,R��
†
R�(�r)�α�R′�′ (�r), (27)

for which the computation with the FR-EMTO method is
straightforward (for the current density of system with atomic
disorders, it is similar to the derivation of disorder-averaged
spin current in the next subsection). Then the total current can
be given by the integration

I =
∫

dE
∫

S

�J (E , �r) · d�s. (28)

Alternatively, as shown in Appendix B, with the charge
conservation law, the total electron-charge current flowing
through the central device region can be calculated as the
flowing-out current from the left electrode given by the re-
lation

Itotal,l = e

h̄

∫
T (E )( fr − fl ), (29)

where T (E ) = Tr[GR
CC�rGA

CC�l ] is called the transmission
coefficient, the linewidth function �a

l/r = i(�a,A
l/r − �a,R

l/r )
characterizing the couplings between electrodes and the cen-
tral device [50]. The above equation, for fully relativistic
quantum transport with the same form as the scalar-relativistic
case [26], is known as the Landauer-Buttiker current for-
mula [50]. For the disordered electronic device, we compute
the disorder average of the transmission coefficient, namely
〈T (E )〉 = Tr[GR

CC�rGA
CC�l ], which involves the disorder av-

erage of two-GF correlators. Here we apply the technique of
nonequilibrium vertex correction (NVC) in CPA with SSA, by
writing

T (E ) = GR
CC�rGA

CC�l + GR
CC�NVCGA

CC�l (30)

(for more details, please refer to our previous works in
Refs. [26,38,51,52]). The first term is usually called co-
herent part accounting for the contribution of momentum
coherent transport through the effective medium. The NVC
�NVC provides an effective way to account for the effects
of multiple scattering of disorders, presenting an important
way to simulate the realistic device with inevitable random
defects/impurities [26,38,51,53]. In our present implementa-
tion of the FR-EMTO, in addition to disorder effects, the fully
relativistic effects are included for quantum transport simula-
tion of disordered nanoelectronics, significantly extending the
capability of first-principles device-material simulation.

B. Electronic spin transport: Pauli spin current

The spin current is one of main concerns in the field of the
spintronics. To study the spintronic phenomena, the central
task is to calculate the time evolution of the spin polarization
density defined as �S = 1

2�† ���, namely to calculate d
dt

�S.
(Note that in relativistic quantum mechanics, the general
definition of the spin polarization operator is still an important
issue [54,55]. Here we use the Pauli spin operator for low-
energy physics of condensed-matter materials.) As we shown
in Appendix C, we can obtain the continuity relation

d

dt
�S = −∇ · J

↔s + i

2h̄
�†[Ĥ, ��]�, (31)

where J
↔s is the spin current density tensor and i

2h̄�†[Ĥ , ��]�
is the torque term. Here, the spin current tensor element Jsi

j ,
for the spin’s ith component transporting in the jth direction,
is given as

Jsi
j (�r) = 1

2 [c�†(�r)α j�i�(�r′)]�r=�r′ , (i, j = x, y, z). (32)

We also find that the definition of spin current in Eq. (32) can
be derived from quantum electrodynamics with the Noether
theorem [56]. As demonstrated in Ref. [56], in the non-
relativistic limit up to the order of 1

c , the spin current in
Eq. (32) not only contains the conventional spin current,
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namely 1
2 (�̂vσ + σ �̂v), but also contains an important contri-

bution i
2 [(σ × �̂v)σ + σ (�̂v × σ )] (due to the SOI) which is

responsible for the spin Hall effect.
We note that the overlapping FR-EMTO presents an impor-

tant difficulty for implementing the local current formalism
for calculating the spin current [57–59]. In this work, based on
the NEGF and FR-EMTO method, we present the real-space
technique for first-principles calculation of the Pauli spin
current density as

Jsi
j (E , r) = c

2
Tr[�(�r)�†(�r′)α j�i]�r=�r′

= − ic

4π
Tr[G<(�r, �r′)α j�i]�r=�r′

= − ic

4π
Tr

[ ∑
R�,R′�′

G<
R′�′,R��R′�′ (�r)�†

R�(�r)α j�i

]

= − ic

4π

∑
R�,R′�′

G<
R′�′,R��

†
R�(�r)α j�i�R′�′ (�r). (33)

For a disordered system, the disorder-averaged spin current
density can be calculated with the conditionally averaged
NEGF as follows (for more details, see Appendix C):

J
si

j = − ic

4π

⎡
⎣ ∑

R�R�′

∑
Q

CQ
R G

<,Q
R�′,R��

Q,†
R� α j�i�

Q
R�′

+
R 
=R′∑

R�R′�′

∑
QQ′

CQ
R CQ′

R′ G<,QQ′
R′�′,R��

Q,†
R� α j�i�

Q′
R′�′

⎤
⎦, (34)

where G<,QQ′
is defined in Eq. (26) with the CPA. Then with

the spin current density, the total Pauli spin current through
a surface area can be directly obtained by the integration
Isi = ∫ dE

∫
S

�Jsi (E , �r) · d�s. For a closed surface, the total spin
current provides the spin-torque contribution, due to spin
current flow, to the enclosed region. The use of the compact
basis set, FR-EMTO, can greatly reduce the computational
cost for spin current density. By calculating the spin current
from first principles, the various spin-transport phenomena
can be analyzed for spintronic device materials. Importantly,
with the FR-EMTO method, the effects of random impurities
and defects on spin transport can be effectively calculated.
Moreover, it should be mentioned that with the real-space
technique, the computation of the torque term in Eq. (31)
is also straightforward in the FR-EMTO method for both
ordered and disordered devices with the NEGF technique,
which are going to be reported in our next work. Here, it is
worth mentioning that according to the Helmholtz theorem, a
unique definition of spin current in a device system, as shown
in Fig. 1, depends on the boundary conditions, divergence and
circulation of the current. As shown in Appendix C, not like
the divergence, the circulation is not definitely defined for
spin current. However, the present definition of spin current
in Eq. (32) is physically transparent, and possesses the cor-
rect divergence of current needed for calculating d �S

dt which
is physically important. For the boundary condition in our

present calculation, we use the nearly spin-current-conserved
electrodes in which the SOI is negligible.

VI. IMPLEMENTATION AND RESULTS

We have implemented the FR-EMTO-based KSDFT in
a first-principles nanoelectronic device simulation package
including both the bulk- and device-materials solvers. For the
electronic structure self-consistent calculation, please refer to
Ref. [18] for the quantities including electron charge density
and spin density inside each atomic sphere. For the intercell
electrostatic potential in the effective muffin-tin potential,
we use the spherical cell approximation proposed by Vitos
[23,25], and the detailed treatment of the Madelung potential
for device structures can be found in Ref. [26]. In our present
implementation for device structures, the renormalization of
spherical cell approximation (SCA) charge to neutrality for
the central device region is realized by introducing the site-
dependent shift δQR which is determined by the on-site ele-
ments of the normalized Green’s function (namely G · O). The
Anderson mixing algorithm is applied for the self-consistency
in the present implementation. In the calculations of charge
density and charge- and spin-current density, we use lmax = 8
in the expansion of SSW in Eq. (8). In this section, we
demonstrate the correctness of our numerical implementation
of FR-EMTO by investigating both the electronic structure
and transport properties of device and bulk materials. To test
the bulk material solver, we calculate the spectra function of
FCC Co, Pt, and HgTe and compare with the band structure
of PAW calculations with VASP [12]. Moreover, as a test of
the electronic structure calculation with the device-material
solver, we calculate the Rashba-type surface states of the FCC
Au(111) surface and FCC Ag(111)/Ag2Bi1 alloy surface, and
the FR-EMTO results are compared with the experimental
measurements and the PAW slab calculations [12]. For an
ordered system, to get the spectral function, we calculate the
normalized GF for each �k at the energy E ,

AB(z, �k) = − 1

π
Im[GR(z, �k)O(z, �k)]BB, (35)

where B is the basis site in a primitive/unit cell. (Please refer
to Appendix D for the spectra function of disordered systems.)
For the quantum transport properties, we mainly investigate
the charge and the spin transport in the perfect and disordered
Cu/Co/Pt/Cu junctions, and the effects of disorders and
interfaces on the transport are calculated from first principles.
In the bulk and two-probe electronic structure calculations,
to ensure the convergence, we use 30 energy points for
the complex energy contour with the Gaussian quadrature
method, and 60 × 60 × 60 and 60 × 60 uniform k meshes for
the bulk 3D and device 2D whole first Brillouin zones (BZs),
respectively. The local spin density approximation (LSDA)
exchange-correlation functional [60] is employed in our cal-
culations of both spin-polarized and nonpolarized material
systems. In the calculation of the transmission coefficient, a
200 × 200 k mesh is used for the plot in the whole 2D BZ. For
the real-space charge current density and spin-current density,
a 100 × 100 r mesh is used for the integration and plot. For
more details, please refer to the Supplemental Material [61].
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FIG. 2. Electron dispersion of bulk Co (a), Pt (b), and HgTe (c).
Yellow dashed line: Result of PAW with SOI. Black solid line: Result
of SR-EMTO. Red solid line: Result of FR-EMTO.

A. Fully relativistic electron dispersion of bulk Co, Pt, and HgTe

First of all, we demonstrate the implementation of the
FR-EMTO-based bulk solver for the electronic structures of
bulk materials. We calculate the spectral function for the bulk
FCC structures of Co, Pt, and HgTe (see the Supplemental
Material for the computation details [61]). Figure 2 presents
the FR-EMTO electron dispersion results together with the
calculations of SR-EMTO and PAW for comparison. As
shown in Fig. 2, despite the very different ways for including
the relativistic effects, the implemented FR-EMTO (in red)
presents very good agreement with the calculations of PAW
(in dashed blue) for all the calculated bulks (especially in the
range ±3 eV around the Fermi energy EF = 0.0 eV), demon-
strating the important accuracy of the FR-EMTO method. As
known, the relativistic effect generally becomes more and
more important when the atomic number and electron angular
momentum increases. As seen in Fig. 2(b) for Pt and Fig. 2(c)
for HgTe, the FR-EMTO and PAW results present important
band splitting compared to the results of SR-EMTO (in black)

FIG. 3. The electron dispersion of the Rashba-type surface states
for Au(111) and Ag(111)/(1ML)Ag2Bi1 alloy surfaces. Blue circles:
PAW slab calculations with VASP code.

where the SOI is neglected. In particular, for Pt at the � point,
the single band at E = −4.70 eV in SR-EMTO is split into
two bands with an interval �E = 0.96 eV with FR-EMTO,
reproducing very well the results of PAW. In comparison
with Pt, the effect of SOI in HgTe is relatively smaller, but
not negligible, because of the smaller atomic number of Te
compared to Pt, and the fact that states in Hg feature low
angular momentum around the Fermi energy. In Co, it is clear
that both spin-polarized FR-EMTO and PAW calculations
present almost the same results as the SR-EMTO calculation,
presenting the fact that the SOI is very weak in bulk Co. Here,
it should be mentioned that in the present implementation
of FR-EMTO, the major error source is the spherical cell
approximation used to simplify the calculation of the intercell
electrostatic interaction. However, the present EMTO method
features the important advantages of the overlapping potential
sphere and equal-footing treatments of atomic and interstitial
regions, and thus is expected to provide high accuracy for sim-
ulating electronic device materials with surfaces/interfaces,
beyond the second-generation TB-LMTO method.

B. Rashba-type states of Au and Ag/Ag2Bi1 alloy (111) surfaces

To validate our implementation of the FR-EMTO for
device materials, we study the electronic structures of
the Au(111) surface and Ag(111)/(1ML)Ag2Bi1 alloy sur-
face, in which Rashba-type spin splitting has been ex-
perimentally measured due to the strong SOI on both
surfaces [62–66]. In the EMTO calculation, the elec-
tronic structure is self-consistently obtained with the two-
probe device structure, namely Au/(12ML)vacuum/Au, and
Ag/(1ML)Ag2Bi1/(12ML)vacuum/Ag with transport direc-
tion of FCC(111). As a comparison, we also conduct band
structure calculations for Au(111) and Ag/(1ML)Ag2Bi1 sur-
faces by using VASP based on slab structures (for more de-
tails, see the Supplemental Material) [12]. In our calculation,
the surface atomic layer is fully relaxed with VASP. Figure 3
presents electron dispersion of the surface layer calculated by
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FIG. 4. k‖-resolved transmission coefficient T (k‖) in two-dimensional BZ for the perfect Cu/(8ML)Co/(5ML)Pt/Cu junction, and
Cu/(7ML)Co(1ML)Co0.5Pt0.5/(5ML)Pt/Cu junction with interfacial disorder: (a) SR spin-up channel, (b) SR spin-down channel, (c) SR
total, (d) FR total, and (e) difference between SR and FR calculations.

both SR- and FR-EMTO methods in comparison with PAW
slab calculations with and without SOI (blue circles). It is
clear that surface states calculated by EMTO methods agree
well with those calculated by VASP, presenting an important
test for our first-principles implementation of EMTO. For
both Au(111) and Ag/(1ML)Ag2Bi1 surfaces, as shown in
Figs. 3(c) and 3(d), the results of FR-EMTO and VASP with
SOI present apparent spin splitting in the parabolic surface
bands around the � point, which is absent in the calculations
without SOI [see Figs. 3(a) and 3(b)]. Such band splittings,
known as the “Rashba effect,” are caused by inversion sym-
metry breaking in surface structures and the strong SOI.

It should be mentioned that the SOI is very weak in the
bulk Au around the EF due to the dominant s orbital (l = 0).
However, as shown in the SR-EMTO result of Fig. 3(a), the
Au(111) surface presents an interesting parabolic band (close
to the EF ) with the dominant component of the p orbital (l =
1). For such surface state, the inclusion of SOI can give rise to
appreciable Rashba-type spin splitting as shown in FR-EMTO
calculation. It can be measured that the Rashba constant for
the parabolic state is αR = 0.35 eV/Å with FR-EMTO, agree-
ing well with previous experimental measurement [62–64]
and VASP calculation (0.38 eV/Å). For the Ag/Ag2Bi1 alloy
surface, we calculate the long-range ordered (

√
3 × √

3)R30◦
structure with 2 Ag and 1 Bi atoms, and the surface Bi
atoms located 0.60 Å above the surface Ag atoms, consistently
with previous experimental and theoretical studies [65,66].
As shown in Figs. 3(c) and 3(d), the Ag/Ag2Bi1 surface
with FR-EMTO presents a giant Rashba-type spin splitting

for the parabolic surface state around the � point, much
larger than that of the Au(111) surface. It is calculated that,
for the spin splitting, the giant Rashba constant is αR = 2.7
eV/Å, agreeing well with experimentally measured value of
3.0 eV/Å [65]. The successful reproduction of the Rashba-
type surface states on Au(111) and Ag/(1ML)Ag2Bi1 sur-
faces presents an important test for FR-EMTO electronic
structure calculation of the device materials, providing an
important basis for the fully relativistic quantum transport
simulation from first principles. In the following, we investi-
gate the electronic charge and spin transport through different
interfaces to demonstrate the FR-EMTO-based first-principles
quantum transport method.

C. Electronic charge transport

For the transport, we calculate the electron transmission
coefficients with FR-EMTO and compare with the results
of SR-EMTO calculations [26]. Figure 4 presents the k‖-
resolved transmission for the perfect and disordered junctions
of Cu/Co/Pt/Cu with transport in the FCC(111) direction
(see the Supplemental Material for the transport results of
the Pt(111)/Al(111) and Co(111)/Co(111) systems [61]). As
shown in the first row of Fig. 4 for the perfect junction, it
can be found that the result of FR-EMTO possesses a 3-fold
symmetry, while the SR-EMTO results possess a 6-fold sym-
metry for both spin-up and spin-down channels. However, as
shown in the Supplemental Material, the perfect Pt/Al asym-
metric heterostructure presents a 6-fold symmetry for both the
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FR- and SR-EMTO calculations. It has been known that
the 6-fold symmetry in the FR-EMTO calculation of perfect
Pt/Al and all the SR-EMTO calculations is given by the 3-fold
geometry symmetry in FCC(111) plus the time-reversal sym-
metry [namely the relation T (k‖) = T (−k‖)] for the ordered
devices in the absence of both SOI and spin polarization [67].
However, for the perfect Co/Pt, spin-polarization in Co and
strong SOI in Pt break the time-reversal symmetry in the
FR-EMTO calculation, resulting in the different symmetry
compared to SR-EMTO results. Moreover, in contrast to the
FR-EMTO calculation of magnetically perfect Cu/Co/Pt/Cu,
we find that the Sharvin transmission of Co/Co presents a
6-fold symmetry in FR-EMTO calculations as shown in the
Supplemental Material [61]. Here, the 6-fold symmetry in FR
results of Co/Co is attributed to the translational symmetry
of FCC(111) in pure Co/Co; namely, the translation along
FCC(111) for one layer is equivalent to a 6-fold rotation.

Figure 4(e) shows the difference between FR- and SR-
EMTO total transmission, namely T SR(k‖) − T FR(k‖). It is
clear that the inclusion of SOI (as the major difference in
SR and FR calculations) presents the important difference
in transmission distribution in the BZ. For example, the
transmission difference between FR and SR calculations can
be as large as 2.0 in the red circle in Fig. 4(e) for perfect
Cu/Co/Pt/Cu. However, we note that the total transmissions
of FR and SR are close for all the systems calculated in this
work (see the Supplemental Material for Pt/Al and Co/Co
results [61]), for example T FR = 0.70 compared to T SR =
0.74, due to the relatively weak SOI in these systems. The
presence of correct symmetry in the FR results and the close
total transmission to SR results in various perfect systems
presents important tests on the fully relativistic quantum
transport method.

As an important capability of the EMTO-based first-
principles quantum transport method, the diffusive elec-
tron transport through disordered impurities/alloys can
be calculated with CPA combining with vertex correc-
tion [see Eq. (30)] [38]. The second row of Fig. 4
presents the total transmission results for disordered
Cu/(7ML)Co/(1ML)Co0.5Pt0.5/(5ML)Pt/Cu containing 1
atomic monolayer disordered intermixed interface. It is
clearly seen that the results of both SR- and FR-EMTO
(including the total, coherent, and vertex correction parts)
feature the 3-fold symmetry, contrasting to 6-fold symmetry
in SR calculation of the perfect systems. The loss of 6-fold
symmetry in the SR coherent part is due to the fact that the
effective Hamiltonian with CPA is non-Hermitian, namely the
coherent D function, and diffusive scattering in disordered
devices breaks the symmetry T SR

R→L(�k‖) = T SR
L→R(�k‖), breaking

the symmetry T (k‖) = T (−k‖) [67]. As we find, the presence
of 1ML Pt0.5Co0.5 on the interface slightly increases the total
transmission in both the SR and FR calculations compared to
the results of perfect structure, for example, T FR

disorder = 0.71
and T SR

disorder = 0.75. Compared to the concentrated pattern
in the results of a perfect system, the transmission of the
disordered junction becomes more diffusive due to random
disorder scattering. In the simulation of disordered devices,
we use the coherent part to include electron coherent transport
through effective medium without �k‖ relaxation (the third

row in Fig. 4), and use the vertex part to account for the
contribution of interchannel diffusive scattering (the fourth
row in Fig. 4). Due to the fact that the interchannel scattering
induced by 1ML disorder is limited, the vertex correction part
is smaller than the coherent part in all FR and SR calculations
in Fig. 4. However, the vertex correction is not negligible and
has an important contribution to the total transmission, for
example, T FR

vertex = 0.22 compared to T FR
coherent = 0.49. There-

fore, we believe that the implementation of the FR-EMTO-
based quantum transport method can significantly expand the
capability for simulation of realistic nanoelectronics from first
principles.

In addition to the reciprocal-space transmission coefficient
calculation, we have also implemented the fully relativistic
charge current density in real space, as an important test for
the real-space transport formalism [see Eq. (27)]. As shown
in Fig. 5, we plot the FR current density Jz(EF , �r) through a
unit cross section at different z, for both perfect and disordered
(with 1ML interfacial Co0.5Pt0.5) junctions. It is notable that
all the real-space current density for both ordered and dis-
ordered systems features the 3-fold symmetry. Compared to
results of the perfect junction, the presence of disorder at the
Co/Pt interface only significantly influences the current den-
sity distribution close to the disordered layer, such as the result
at z0, while Jz at other places are only slightly tuned. For both
the perfect and disordered systems, it is clear that the current
density pattern is quite different in different materials due to
the different electronic states for the transport. Although there
are notable differences in the distribution of current density
around the interface and inside different materials Pt, Co, and
Cu, we find the integrated total current, namely IFR = ∫S JzdS,
is the same at different z, regardless of the numerical error.
Moreover, the integrated value equals the total transmission
coefficient. In particular, we obtain, for a perfect junction,
IFR,z
clean = T FR

clean = 0.70, and for a disordered junction, IFR,z
disorder =

T FR
disorder = 0.71 (z = −14,−8,−4, 0, 3, 5, 11). Correctly re-

producing the reciprocal-space transmission results demon-
strates the correct implementation of the FR-EMTO based
real-space transport formalism and the CPA based Keldysh
NEGF formalism for the disordered systems. Moreover, due
to the similarity between charge current density in Eq. (27)
and Pauli spin current density in Eq. (33), the correct imple-
mentation of FR charge current density provides an important
basis for calculating the Pauli spin current in device materials.

D. Electronic spin transport

On the basis of charge current density calculation, the
implementation of Pauli spin current density is straightfor-
ward, namely by replacing c�α with c�α �� [see Eqs. (33) and
(27)]. Here, as further study, we calculate the spin trans-
port in the perfect and disordered Cu/Co/Pt/Cu junctions
to demonstrate the important capability of FR-EMTO for
the simulation of spintronic device materials. To evaluate the
influence of the interface and disorders on the spin transport,
Fig. 6 presents the total spin current Jsz

z (EF ) through the unit
cross sections at different z (we note the nonzero Jsx

z and
J

sy
z are too small to present here). Here, we set the electron

injection from the left Cu electrode by using the electrodes’
fL = 1.0 and fR = 0.0 in the Keldysh NEGF calculation. It is
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FIG. 5. Current density Jz(EF , �r) distribution in the unit cross section perpendicular to transport direction at different z for the perfect
Cu/(8ML)Co/(5ML)Pt/Cu junction in first row, and disordered Cu/(7ML)Co(1ML)Co0.5Pt0.5/(5ML)Pt/Cu junction in second row. Each z
is at middle position of two neighboring atomic layers, and z = 0 is set for the Co/Pt interface.

known that the spin current is not conserved in the presence
of both the SOI and various scatterings in the FR calculation.
In the system Cu/Co/Pt/Cu, the SOI can be negligible inside
Cu, but can play an important role for spin transport inside
Pt and at the interfaces Co/Pt and Pt/Cu (for the Rashba-
type SOI due to the break of inversion symmetry). As a
result, for all the three junctions as shown in Fig. 6, the
spin current stays almost constant inside the Cu (for z � −7
and z � +6) and presents important variation around the
interfaces and inside Pt (for −1 � z � 5). It can be found that
as spin current is injected into Pt, the spin current features
an appreciable decrease from z = −1 to z = 4 due to the
strong SOI at the Co/Pt interface and inside Pt, giving rise
to a significant spin memory loss which is consistent with
previous studies [68,69]. For the perfect junction (in the red
circle), we can find that there exists sharp oscillations inside

FIG. 6. The total spin current Jsz
z (EF ) through the unit cross

section at different z for energy at EF . Red circle: Perfect
Cu/(8ML)Co/(5ML)Pt/Co junction. Green square: Disordered
Cu/(7ML)Co/(1ML)Co0.5Pt0.5/(5ML)Pt/Cu junction. Blue
diamond: Disordered Cu/(7ML)Co/(1ML)Co0.5Pt0.5/(5ML)Pt0.95

Va0.05/Cu junction. For structure, see Fig. 5.

Co and at the Pt/Cu interface which can be attributed to the
wave-function interference effects in the coherent transport
regime. Compared to the results for the perfect junction, the
inclusion of 1ML Co0.5Pt0.5 (in the green square) only slightly
reduces the inflow and outflow spin current. However, it is
apparent that the diffusive scattering induced by the 1ML
intermixed layer can significantly modulate the spin current
behavior inside the Co and at the sharp Pt/Cu interface. As
further introducing 5% disordered vacancies into the 5ML
Pt (in the blue diamond), namely Pt0.95Va0.05, the total spin
current at different z is significantly reduced. In particular, the
outflow/inflow spin currents change from the value 0.11/0.17
of the perfect junction to 0.06/0.14 of the disordered junction
with Pt0.95Va0.05. It is clear that more diffusive scattering
in Pt0.95Va0.05 greatly smoothens spin current inside Co and
at the Pt/Cu interface, and enhances the spin loss (namely
reduces the outflow/inflow ratio), presenting the important
effects of diffusive disorder scattering on spin transport.

Moreover, Fig. 7 presents the real-space spin current den-
sity �Jsz

z (�r, EF ) across a 2D unit cell at Fermi level for the
different z (the same as those in charge current density cal-
culations in Fig. 5). For all the cases, �Jsz

z (�r, EF ) possesses
3-fold symmetry for both ordered and disordered junctions.
It is clear that for each junction, the spin-current distribution
is quite different inside different materials and at differ-
ent interfaces due to the different local states for electron
transport. Compared to the results of the perfect junction,
the presence of disorders (see the second and third rows in
Fig. 7) can greatly modulate the spin current distribution
pattern, especially around the Co/Pt interface z = −4, 0, 3.
For example, the sharp peak (the red region) at the corner for
the perfect junction is significantly reduced by the presence
of the disorders Co0.5Pt0.5 and Pt0.95Va0.05. In addition, as an
important feature of spin transport, the spin current can be
negative in some part of the region, presenting the dominant
contribution of spin-down electrons. The implementation of
the FR-EMTO quantum transport method provides us the
important capability to analyze the effects of interface and
disorder scatterings on various spin transport phenomena from
first principles.
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FIG. 7. Real-space spin current density for perfect Cu/(8ML)Co/(5ML)Pt/Cu junction in first row, disordered
Cu/(7ML)Co/(1ML)Co0.5Pt0.5/(5ML)Pt/Cu junction in second row, and disordered Cu/(7ML)Co/(1ML)Co0.5Pt0.5/(5ML)Pt0.95Va0.05/Cu
junction in third row. For atomic structure, see Fig. 5.

VII. CONCLUSIONS

In summary, we have implemented the FR-EMTO-based
first-principles quantum transport method for simulating the
electronic charge and spin transport through device ma-
terials. For the device structure, both the spin-polarized
and nonpolarized Kohn-Sham Dirac equations are self-
consistently solved with the Green’s function method. Based
on the NEGF technique, we formulate the fully relativis-
tic charge-current/transmission coefficient and Pauli spin
current for transport calculation. To treat the disordered
defects/impurities inevitable in realistic materials, we com-
bine the NEGF in the Keldysh space with CPA to calculate the
disorder-averaged various Green’s functions. We account for
the effects of the multiple disorder scattering on the transport
by vertex corrections to the two-Green’s-function correlator.
To test our implementation, we investigate the spectra of
bulk Co, Pt, and HgTe and Rashba-type spin splitting on the
surfaces of FCC Au(111) and Ag(111)/Ag2Bi1. The results
of the first-principles FR-EMTO method agree well with the
calculations of projector-augmented wave method in VASP
and experimental measurements. For the quantum transport,
we calculate the electronic charge and spin transport through
perfect and disordered Cu/Co/Pt/Cu junctions, and the im-
portant effects of disorder and interface scattering for the spin
transport is demonstrated from first principles. The present
FR-EMTO-based first-principles quantum transport method
provides an important tool for simulating the electron and spin
transport properties of realistic device materials, extending the
capability of first-principles methods for material simulations.
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APPENDIX A: CONDITIONALLY AVERAGED
NEGF IN KELDYSH SPACE

For completeness, we here provide some details for de-
riving the conditionally averaged Keldysh GFs as defined in
Eq. (24). We use the occupation operator technique (for more
details, please see Ref. [70]).

According to the definition of occupation operator η
Q
i , we

can define the random Keldysh quantity for a site i,

Di =
∑

Q

η
Q
i DQ

i , (A1)

with the relation ∑
Q

η
Q
i = 1. (A2)

Then, we can solve for η
Q
i (Q = A, B),

ηA
i = −(�Di )

−1
(
DB

i − Di
) = −(DB

i − Di
)
(�Di )

−1,

ηB
i = (�Di )

−1
(
DA

i − Di
) = (DA

i − Di
)
(�Di )

−1, (A3)

where �Di = DA
i − DB

i . To eliminate the random quantity Di,
we use the definitions G = (S − D)−1,G = (S − D)−1 and
obtain

D = D − G−1 + G−1, (A4)

which directly give three identities:

〈DG〉 = DG, 〈GD〉 = GD,

〈DGD〉 = DGD − 〈D〉 + D. (A5)

By substituting Eqs. (A3) and (A4) into the definition of
conditionally averaged GFs, namely Eq. (24), and employing
the above three identities, we can obtain

ḠQ
ii = ( f Q

i G
)

ii, ḠQQ′
i j = ( f Q

i GhQ′
j

)
i j, (i 
= j), (A6)
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where

f A
i = − (�Di )−1

cA
i

(
DB

i − Di
)
, hA

i = −(DB
i − Di

) (�Di )−1

cA
i

,

f B
i = (�Di )−1

cB
i

(
DA

i − Di
)
, hB

i = (DA
i − Di

) (�Di )−1

cB
i

.

(A7)

With the CPA condition 〈t i〉 = 0, f Q
i and hQ

i can be rewrit-
ten in a more compact form as follows:

f Q
i = 1 + Giit

Q
i , hQ

i = 1 + tQ
i Gii. (A8)

Then, we obtain the conditionally averaged Keldysh GFs,

ḠQ
ii = (G + GtQ

i G
)

ii, ḠQQ′
i j = [(1 + GtQ

i

)
G
(
1 + tQ′

j G
)]

i j .

(A9)

By rewriting the quantities in Eqs. (A9) with the

Keldysh representation, namely G = (G
A 0

GK GR) and tQ =
(tA,Q 0
tK,Q tR,Q), we can find

ḡA,Q
ii = [

GA+GAtA,Q
i GA]

ii, ḡR,Q
ii = [GR+GRtR,Q

i GR]
ii,

ḡK,Q
ii = [

GK + GRtK,Q
i GA + GKtA,Q

i GA + GRtR,Q
i GK]

ii,

(A10)

and

ḡA,QQ′
i j = [(

1 + GAtA,Q
i

)
GA(1 + tA,Q′

j GA)]
i j
,

ḡR,QQ′
i j = [(

1 + GRtR,Q
i

)
GR(1 + tR,Q′

j GR)]
i j,

ḡK,QQ′
i j = [(

1 + GRtR,Q
i

)
GK(1 + tA,Q′

j GA)]
i j

+ [(GKtA,Q
i + GRtK,Q

i

)
GA(1 + tA,Q′

j GA)]
i j

+ [(1 + GRtR,Q
i

)
GR(tK,Q′

j GA + tR,Q′
j GK)]

i j
.

(A11)

Then with the above results, all the conditionally averaged
GFs can be found with CPA, including G<,Q/QQ′

, to calculate
the physical properties of a disordered system.

APPENDIX B: FULLY RELATIVISTIC ELECTRONIC
CHARGE CURRENT FORMULA

To derive the current formula, we can use the time-
dependent Dirac equation

ih̄
d

dt
� = Ĥ�, (B1)

where H is given in Eq. (1). Then −ih̄ d
dt �

† = �†Ĥ†, and
Ĥ† = c �p† · �α† + (β − I4)mc2 + V (�r) + β �� · �B(�r). One can
straightforwardly check that

q
d

dt
(�†�) = d

dt
(�†)� + �† d

dt
(�)

= −qc(∇�†)�α� − �†(qc�α · ∇�)

= −∇ · (qc�† �α�)

= −∇ · �J, (B2)

where c�α = i
h̄ [�r, Ĥ ] is the velocity operator in FR quantum

mechanics, and the current density is given as

�J = qc�† �α�. (B3)

For the total current, in an alternative way, we consider
� = {�L, �C, �R} with the three parts for the respective
left electrode, central device region, and right electrode in
a orthonormal basis representation. Then we can rewrite the
Dirac equation for a two-probe device system,

ih̄
d

dt

⎛
⎝�L

�C

�R

⎞
⎠ =

⎛
⎜⎝HL τ

†
L 0

τL HC τR 0

0 τ
†
R HR

⎞
⎟⎠
⎛
⎝�L

�C

�R

⎞
⎠. (B4)

Then one can find that

ih̄
d

dt
�L = HL�L + τ

†
L �C, (B5)

ih̄
d

dt
�C = τL�L(�r, t ) + HC�C + τR�R, (B6)

ih̄
d

dt
�R = τ

†
R�C + HR�R. (B7)

Therefore, we have the following solutions for the left and
right electrodes with coupling to the central device:

�L = �L,0 + gLLτ
†
L �C, (B8)

�R = �R,0 + gRRτ
†
R�C, (B9)

where ih̄ d
dt �L,0 = HL�L,0, ih̄ d

dt �R,0 = HL�R,0, (ih̄ d
dt −

HL )gLL = δ, and (ih̄ d
dt − HR)gRR = δ, describing the

electrodes disconnecting to the central device. With the
above results, we can obtain, for the central part,

ih̄
d

dt
�C = (HC + �)�C + S, (B10)

with the so-called self-energy � = τLgLLτ
†
L + τRgRRτ

†
R and

the source term S = τL�L,0 + τR�R,0 [50]. As an result, we
obtain

�C = �C,0 + GCCS, (B11)
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where �C,0 describes the device disconnecting to the electrodes, (ih̄ d
dt − HC − �)Gcc = δ. In practical applications we neglect

�C,0 assuming that all the states of central device are perturbed by contacting with electrodes, and thus �C = GCCS. Then with
these important relations, we can derive that the current flowing from left to right is given by

d

dt
(�†

L�L ) = Tr

[
d

dt
(�L�

†
L )

]
= Tr

[
d�L

dt
�

†
L + �L

d�
†
L

dt

]
= − i

h̄
Tr[τ †

L �C�
†
L − �L�

†
CτL]

= − i

h
Tr[GCC�<

L + G<
CC�

†
L − �<

L G†
CC − �LG<

CC]. (B12)

In the steady state, it is easier to work with energy-dependent quantities. By doing Fourier transformation, we find that the
total current flowing out the left electrode can be obtained with energy integration,

IL = ie

h

∫
dETr

{
�<

L (E )
[
GR

CC (E ) − GA
CC (E )

]+ G<
CC (E )

[
�A

L (E ) − �R
L (E )

]}
= e

h

∫
dETr

{
�L
[

fL(E )GR
CC (E )i(�R − �A)GA

CC (E )
]+ G<

CC (E )
}

= e

h

∫
dETr

[
( fL − fR)�LGR

CC (E )�RGA
CC (E )

]
,

(B13)

where �L/R = i[�A
L/R(E ) − �R

L/R(E )], �< = �<
L + �<

R = fL(E )�L + fR(E )�R. Here, one can define the transmission coeffi-
cient as

T (E ) = �LGR
CC (E )�RGA

CC (E ). (B14)

APPENDIX C: FULLY RELATIVISTIC PAULI SPIN CURRENT FORMULA

We can check the following continuity relation:

d

dt

[
�† 1

2
�i�

]
= 1

2

d

dt
[�†]�i� + 1

2
�†�i

d

dt
[�] = i

2h̄
[�†Ĥ†�i� − �†�iĤ�]

= i

2h̄
[�†Ĥ†�i� − �†Ĥ�i�] + i

2h̄
�†[Ĥ, �i]� = i

2h̄
( �p�)†c�α�i� − i

2h̄
�†c�α�i · �p� + i

2h̄
�†[Ĥ , �i]�

= −1

2
[∇�†]c�α�i�(r) − 1

2
�†c�α�i∇[�] + i

2h̄
�†[Ĥ, �i]� = −1

2
∇ · [�†c�α�i�] + i

2h̄
�†[Ĥ , �i]�

= −∇ · �Jsi + i

2h̄
�†[Ĥ, �i]�. (C1)

As a result, we can obtain the continuity equation,

d

dt

[
�† 1

2
�i�

]
+ ∇ · �Jsi = i

2h̄
�†[Ĥ , �i]�, (C2)

and the spin current is defined as �Jsi = 1
2�†c�α�i�. To go further, one can rewrite the spin current density with the NEGF

as Eq. (33). In practical calculations, we apply the threefold approximation [19–22] to the current density for maintaining
consistency with the calculation of EMTO overlap and Hamiltonian matrices, namely

Jsi
j (E , �r) = − ic

4π

∑
R�,R′�′

G<
R′�′,R�(E )�†

R�α j�i�R′�′

= − ic

4π

∑
R�,R′�′

G<
R′�′,R�(E )

[
φ

a,†
R�α j�iφ

a
R′�′δRR′ − ϕ

a,†
R�α j�iϕ

a
R′�′δRR′ + ψ

a,†
R�α j�iψ

a
R′�′
]
, (C3)

where φa
R�, ϕa

R�, and ψa
R� are the partial wave, free electron solution, and screened spherical wave, respectively. For disordered

devices, the disorder-averaged spin-current density can be calculated as

Jsi
j (E , �r) = − ic

4π

⎧⎨
⎩
∑

R�,�′

∑
Q

CQ
R G

<,Q
R�′,R�

[
φ

a,Q,†
R� α j�iφ

a,Q
R�′ − ϕ

a,Q,†
R� α j�iϕ

a,Q
R�′ + ψ

a,Q,†
R� α j�iψ

a,Q
R�′
]

+
R 
=R′∑

R�,R′�′

∑
Q,Q′

CQ
R CQ′

R′ G<,QQ′
R′�′,R�ψ

a,Q,†
R� α j�iψ

a,Q′
R′�′

⎫⎬
⎭. (C4)
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In addition, in a similar way, the real-space charge current density for both ordered and disordered devices can be also calculated
with FR-EMTO from first principles.

APPENDIX D: SPECTRAL FUNCTION FOR DISORDERED SYSTEM

For the disordered system, the averaged spectral functions can be formulated as

AB(z, �k) = − 1

π
Im[(GaṠ)(z, �k) − 〈GaḊ〉(z, �k)]BB, (D1)

where (GaṠ)(z, �k) = G(z, �k)aṠ(z, �k) and

〈GaḊ〉BB(z, �k) =
∑

�T
〈GaḊ〉B,B+ �T ei�k. �T =

∑
�T

∑
Q

CQ
B+T

[
G + GtQ

B+TG
]

B,B+T aḊQ
B+T ei�k. �T = GBB(z, �k)a〈(1 + tBGB,B)ḊB〉, (D2)

with 〈(1 + tBGB,B)ḊB〉 =∑Q CQ
B (1 + tQ

B GB,B)ḊQ
B . In the spectral function, unphysical poles are removed [18].
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