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Abstract The in-memory computing (IMC) architecture implemented by non-volatile memory units shows

great possibilities to break the traditional Von-Neumann bottleneck. In this paper, a 3D IMC architecture is

proposed whose unit is based on a multi-bit content-addressable memory (MCAM). The MCAM unit is com-

prised of two 65 nm flash memory and two transistors (2Flash2T), which is reconfigurable and multifunctional

for both data write/search and XNOR logic operation. Moreover, the MCAM array can also support the

population count (POPCOUNT) operation, which can be beneficial for the training and inference process in

binary neural network (BNN) computing. Based on the well-known MNIST dataset, the proposed 3D MCAM

architecture shows a 98.63% recognition accuracy and a 300% noise-tolerant performance without significant

accuracy deterioration. Our findings can provide the potential for developing highly energy-efficient BNN

computing for complex artificial intelligence (AI) tasks based on flash-based MCAM units.

Keywords Reconfigurable, multifunction, MCAM, bitwise operation, Binary Neural Network, Edge AI,

Flash Memory, IMC

1 Introduction

In the era of big data, the increasing demand for efficient data processing has triggered an urgent challenge
in the traditional von Neumann architecture, whose computing units and storage units are separated
leading to a memory wall issue. With the capability to perform a storage function and logic function
simultaneously, in-memory computing (IMC) is proposed and regarded as a potential candidate to break
the von Neumann bottleneck [1,2]. There is a large amount of effort in developing IMC techniques both
on hardware implementation and software algorithms [3-7]. At the hardware unit level, there is a lot
of nonvolatile memory including resistive random access memory (RRAM), ferroelectric random access
memory (FeRAM), magnetoresistive random access memory (MRAM), phase change memory (PCM), and
flash memory [8,9]. Owing to the merits of fast response to write/read operation and good adaptability
to large arrays, flash memory has attracted extensive attention in the field of artificial intelligence at the
edge (Edge AI) including image recognition & classification, object detection & segmentation, natural
language processing and so on. [10-12]. Moreover, content-addressable memory (CAM) is one type of
hardware unit that can easily search its entire contents in one clock cycle. With the unique feature of
distinguishing the mismatching distance, CAM is capable of performing highly parallel and efficient search
operations for data-intensive applications like pattern matching [13-16]. Compared to floating-point GPU
implementations, Kazemi et al. achieve similar accuracies by using flash-based multi bit-CAM (MCAM)
with the ImageNet dataset, which significantly reduces energy consumption and operation latency [17].
At the software algorithm level, inspired by the human nervous system, there are considerable numbers
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of reports to construct highly-parallel and energy-efficient artificial neural networks (ANNs) including
the deep neural network (DNN), convolutional neural network (CNN), binary neural network (BNN),
recurrent neural network (RNN), etc. Among them, BNN is a special one whose weights and activations
are binary numbers (+1 or -1). Compared to other ANNs, BNN can support XNOR logic and population
count (POPCOUNT) operations to supersede the floating-point operations for convolution and multiply-
accumulate (MAC), which can significantly reduce the hardware resource [18-20]. Thus, BNN computing
has received wide attention in various AI tasks in particular for those data-centered ones [21-24].
Although extensive research has been carried out on the employment of flashed-based CAM in BNN
computing, there are still some challenges in reducing the computing hardware resource and realizing
the offline training process. Firstly, at the unit level, several MCAM units and their peripheral circuits
are required to realize the XNOR operation [25], which may increase memory space and energy costs.
Secondly, there are normally two data lines (DL and (DL)) at the traditional MCAM array for achieving
MAC functions [26-28], which hinders the quick change/iterate the memory states and brings obstacles
for off-line training. Lastly, with the limited capability to distinguish the voltage in match lines (ML),
the CAM arrays are preferred to certain AI tasks, which severely confined their further applications with
complex datasets. Therefore, a compact, multifunctional, and reconfigurable flash-based MCAM unit is
highly demanded, which may be of great importance for achieving highly energy-efficient and resource-
constrained BNN computing with complex tasks.
In this paper, a reconfigurable MCAM unit (2Flash2T) supporting multi-bit stable states is proposed,
which enables bitwise operations without additional peripheral devices. With a separated DL and (DL)
strategy, the proposed unit adopts a pair of input voltage vectors, which may be beneficial for achieving
offline training in BNN computing. By mapping the partitioned matrixes to the multiple blocks, the
proposed 3D MCAM architecture can perform typical AI tasks like image recognition, which shows an
accuracy of ∼ 98.63% with a noise-tolerant capability (input noise up to ∼ 300%) based on the Mixed
National Institute of Standards and Technology database (MNIST). Our findings could provide a novel
strategy to design 3D MCAM architecture for high energy-efficient, resource-constrained, and robust
Edge AI based on the 65 nm flash memory.

2 MCAM Unit and Array Characteristic

Figure1 shows the schematic of the proposed 3D MCAM architecture for binary-valued matrix multiplica-
tions, which includes a digital-to-analog converter (DAC), 3D MCAM blocks, analog-to-digital converter
(ADC), and adder subtractor (ADDER). The DAC is adopted to transfer the input matrixes to volt-
age matrixes, which are further transferred to binary matrixes by using ADC. The MCAM block (grey
region) composed of several 3D MCAM arrays is used to realize the bitwise operations. The ADDER
modules are utilized for integrating the output voltages from ADC leading to an output result. There are
two binary-valued input matrixes (Input A and Input B) with the output corresponding to the result
of matrix multiplication (A×B). The bitwise matrix operations are mainly performed at the MCAM
blocks with the help of peripheral modules.

Figure 1 The schematic image of the proposed 3D MCAM architecture with peripheral devices, which supports the binary-valued

matrix multiplication.
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Table 1 THE SIMULATION SETUP KEY PARAMETERS AND MODELS

Store -1 Store +1

M1
VTH−L < VTH−P < VTH−H

M2

M3 VTH−L VTH−H

M4 VTH−H VTH−L

Search -1 Search +1

DLA VTH−L VTH−H

DLB VTH−H VTH−L

Figure 2 (a) shows the schematic of the 3D MCAM array, where the blue, green, and red lines stand for
two data lines (DLA and DLB) and match line (ML) respectively. The MCAM array contains x×y×z
MCAM units (Figure 2(b)), which are all comprised of two 65 nm flash memory and two depletion-type
PMOS transistors (2Flash2T). Note that, x is the number of units paralleled in ML, and y is the column
number of ML in the 3D array, and z is the layer number. Normally, two complementary DLs (DL and
(DL)) are used for single-datum operations in traditional CAM units. In our proposed MCAM unit, a
separated DLs (DLA, DLB) strategy is adopted to represent 2 different data, which is achieved by the
PMOS transistors to break the complementary constraint between two data lines. Note that in Figure
2, under the condition that apply a high voltage on the gate of PMOS and flash, the PMOS won’t get
broken. The reason is that the range of the programming and threshold voltage of flash memory is strictly
controlled to fit the working voltage range of the PMOS. The line connecting the point between M1 and
M3 to the point between M2 and M4 is necessary to ensure to CAM unit be able to work especially when
searching “-1” of storing “+1” and searching “+1” of storing “-1”. Moreover, the setup parameters of
the SPICE simulation are shown in Table 1 where VTH−L = 0.1V , VTH−P = 0.5V , VTH−H = 0.9V and
the discharge capacitor connected between ML and the grounded is 0.1pF .

Figure 2 The schematic image of (a) the 3D structure with the flash-based MCAM units; (b) the MCAM unit comprised of two

depletion-type PMOS transistors (M1 and M2) and two flash memories (M3 and M4).

Figure 3(a) displays the threshold voltage of individual flash memory and PMOS transistor simulated in
SPICE. The 65nm flash memory shows 16 storage states with threshold voltages (from VTH0 to VTH15)
ranging from 0.3V to 4.8V. By adjusting the threshold voltages of flash memory to fit the threshold
voltages of the PMOS (VTH−P ), the proposed unit can behave like typical MCAM and multifunctional
MCAM. With VTH−P larger than VTH15 (blue region), the proposed unit corresponds to a typical CAM
unit with 16 different memory states. When VTH−P is set within VTH0 and VTH15 (grey region), the pro-
posed unit can also support the data write/search function with a reduced memory state. With VTH−P

smaller than VTH0 (green region), the proposed unit is always off (disabled). The 16 different transfer
curves of the flash memory are shown in Figure 3 (b) corresponding to state-0 (VTH0 = 0.3V ) to state-15
(VTH15 = 4.8V ). When mapping a matrix multiplication, the voltages on DLAs and DLBs represent the
row vectors and column vectors in 2D scale respectively. In 3D scale, the different DLAs and DLBs are
mapped into different 2D planes. The benefits of the 3D structure lie in that the matrixes only required
to be mapped once to DLAs and DLBs. Owing to the separated DLs design, the mapping efficiency is
improved, which is suitable for direct voltage iterating.
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Figure 3 (a) The threshold voltage distributions of a single flash and single PMOS; (b)The transfer curves of the flash memory

with 16 different states corresponding to state-0 to state-15.

Table 2 THRESHOLD VOLTAGE ENCODING OF FLASH CORRESPONDING TO DIFFERENT FUNCTIONS OF THE

MCAM UNIT

M1&M2 VTH−L < VTH−P < VTH−H

Task Case1 Case2 Case3 Case4

M3 VTH−L VTH−L VTH−H VTH−H

M4 VTH−L VTH−H VTH−L VTH−H

Truth Table

(-1,-1)=Match (-1,-1)=Match (-1,-1)=Match (-1,-1)=Match

(-1,+1)=Mismatch (-1,+1)=Match (-1,+1)=Mismatch (-1,+1)=Match

(+1,-1)=Mismatch (+1,-1)=Mismatch (+1,-1)=Match (+1,-1)=Match

(-1,-1)=Match (-1,-1)=Match (-1,-1)=Match (-1,-1)=Match

The PVT (process-voltage-temperature) analysis is conducted to reveal their impacts on the function of
CAM unit. The smaller discharge time (the time of VML reach back to its saturated and stabilized value
under matching condition) and larger voltage margin (the difference between the stable voltage of match
and mismatch) can be obtained by using FF process corner, higher pre-charge voltage, and lower tem-
perature [37-41], and larger voltage margin ratio can be obtained by lower pre-charge voltage. Compared
to the process corner, the temperature and pre-charge voltage are dominated factors that affects the
discharging time and voltage margin. Since the fabricating process is important factor on affecting the
flash Vt distribution [42-45], a Vt shift ranging from -0.2V to 0.2V is adopted to reveal the impacts on the
proposed CAM unit functionality in the SPICE simulation. The voltage margin decreases as the Vt shift
increases. To guarantee a reliable function, the process variation induced Vt shift should be suppressed
within 0.2V for the proposed unit.

A. The multifunctional MCAM Unit for write/search and XNOR logic functions
For the write/search function, the PMOS transistors always keep ON with VTH−P > VTH15, making the
proposed MCAM unit behave like a typical MCAM unit with 16 memory states. Thus, the encoding
scheme of the flash (M3 and M4) threshold voltage is the same as the traditional method.
For the XNOR logic operation, VTH−P is required to be set to a certain range (the grey region in Fig.
3(a)). The two binary data are transferred to input voltages imposed to DLA and DLB via DAC modules,
which should be equal to the memory states (VTH0 to VTH15). The lower input voltage is denoted as
VTH−L and the higher one is denoted as VTH−H corresponding to logic -1 and logic +1, respectively. Note
that the VTH−P should be larger than VTH−L and smaller than VTH−H (VTH−L < VTH−P < VTH−H).
As summarized in Table 2, different threshold voltages of M3 and M4 could lead to four different func-
tions (Cases 1 to 4). Only when the two flash are both programmed to VTH−L, the XNOR function can
be achieved. If VDLA equals VDLB , the MCAM unit could give rise to a match condition. Otherwise,
a mismatch result is obtained, which corresponds to the XNOR logic function (Case 1). In the other
cases (Case 2-4), the truth tables are also displayed, which can be further adopted based on the user’s
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requirement. For example, Case4 can be applied as wildcards to uniform the length when the data length
is inconsistent. Moreover, with the separated DLs strategy, the input information of DLA and DLB
(VDLA and VDLB) do not need to be saved in the MCAM unit, which is beneficial for rapid change.

B. MCAM array characteristics for POPCOUNT functions
For the POPCOUNT logic operation, the MCAM array contains x × y × z units that are adopted to
count the number of mismatch conditions ((A, B) corresponds to (-1, +1) and (+1, -1)). On the array
level, x is limited by the saturated voltage on ML (VML) and its distinguish margin. Thus, in this work,
16 MCAM units are adopted to ensure the mismatched conditions can be clearly distinguished. Figure 4
(a) shows the relationship between discharge time and VML, which falls rapidly at first 0.5µs owing to the
disturbance from the PMOS. If all 16 units are matched, the VML will recover to the recharging voltage,
while the VML increases to various saturated voltages (smaller than the recharging voltage) correspond-
ing to various mismatch numbers. With a discharge time of 6µs, the relationship between mismatching
numbers versus the VML is displayed in Figure 4 (b), which can be fitted as the following equation

num = aebv + c (1)

where a, b, and c are all constant.

Figure 4 (a) The discharge time-dependent distribution of ML current with various mismatching numbers; (b) The relationship

of mismatching numbers versus the voltage of ML (VML) at the discharge time of 6µs.

C. MCAM architecture for binary matrix multiplication function
To perform binary matrix multiplication, periphery devices are further required in dealing with the POP-
COUNT results.
Figure 5 shows the flow chart of the operating process for binary matrixes (A and A) multiplication,
where A1/B1stands for the first row/column vector. The number of XNOR results -1/+1 is assumed as
m/n, which corresponds to the mismatch/match condition on ML. The length of the vector (A1 and B1)
is denoted as k corresponding to the unit number on a single ML. The summary of mismatch conditions
(m) and match conditions (n) equals (k):

m+ n = k (2)

After the XNOR logic processing, the result of A1 ×B1 corresponds to:

(+1)× (k −m) + (−1)×m (3)

which can be simplified to:

k − 2m (4)
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Figure 5 The flow chart of the multiplication calculation process of i × t binary matrix A and t × j binary matrix B.

With the process repeated several times, the output of A × B can be obtained as illustrated in Figure
5. In this way, both the inputs for the matrix calculation can be applied to the circuit with the form of
voltage, making it possible for inputs rapid iteration.

3 3D MCAM Array Implement BNN Computing

A. The partitioned mapping for matrix multiplications and convolution operations
For typical AI tasks requiring large-scale matrix operations, a matrix partition method is adopted by
using the proposed MCAM blocks. Figure 6 (a) shows the schematic image for large-scale matrix mul-
tiplications. A and B are binary matrixes, which are segmented into smaller ones (A11 to A2p and B11

to Bp2) that can be directly mapped to the MCAM arrays. The multiplication results of large matrixes
can be obtained by successively integrating the partitioned matrixes.
Figure 6 (b) shows the scheme of convolution operations with a 4× 4 kernel (Input B). The input matrix
(Input B) is unrolled step by step as the kernel slides upon it, leading to a recombinant matrix denoted
as Input A′. The convolution kernel is unrolled to a vector denoted as Input B′. Then, the convolution
results can be obtained by applying A′ and B′ into matrix multiplications.

B. The network performances for BNN computing
To simplify the hardware implementation process, the BNN structure employed in this work is constructed
by two convolutional layers and two fully connected layers. The first convolutional layer and the last
fully-connected layer are performed with float point operations, while the others are binary. By using
the well-known MNIST dataset, the network performances of BNN computing based on the proposed
3D MCAM architecture are evaluated. The recognition accuracy is mainly affected by two factors which
are hyper-parameter setting and hardware implementation. The hyper-parameter values correspond to
different matrix scales in data flowing of BNN computing, which directly determines the array size. The
training of the proposed CAM based BNN is achieved by using Bin LeNet (the binarized LeNet) model.
Several hyperparameters (the number of layers, convolutional kernel size, the i/o channel sizes) are ad-
justed to improve the network efficiency and accuracy. During training, there are some compressions like
the convolution and pool operations for feature extraction, while no extra compression operations in the
hardware simulation to maximize the accuracy.
Figure 7(a) shows the accuracies with different x× y × z arrays (constant x & z of 16 & 64). Note that
x is the number of units paralleled in ML, y is the column number of ML in the array, and z is the layer
number of the output channel for cnov2. The accuracy increases slightly from 94.51% to 98.91% as y in-
creases from 4 to 81. For different hardware implementation conditions, Figure 7(b) shows the accuracies
with the mapped layer implemented by cnov2, only fc1, as well as both cnov2 and fc1 at various array
sizes. It is clear that the hardware implementation has limited impacts on the accuracy. Further exper-
imental results show that the circuit error has little effect on the training accuracy of large-scale neural
networks. For more complex datasets, large array size is normally required, which brings challenges in
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Figure 6 The schematic image of (a) matrix partitioning scheme for large-scale matrix multiplications; (b) converting convolution

operations to matrix multiplications.

increasing the number of CAM units paralleled in one ML and of MLs paralleled in one plane. This
may be achieved by suppressing the device variation and enlarging the voltage margin. Additionally, a
dynamically matrix partition strategy is also important, which can adjust the matrix size based on differ-
ent data complexities and required accuracies. The proposed architecture can be applied on some more
complex dataset. For example, the classification accuracy is ∼ 78.09% by using Bin VGG13 model in
CIFAR10 dataset. The network performances can be optimized by using complex neural network model
(Bin VGG16, Bin VGG19) [29,30], enlarging the array size and improving the CAM unit performance.
Moreover, the noise immunity is verified based on the MCAM block implemented BNN computing. Figure
8 shows the accuracy (left axis) and error (right axis) under different noise rate (α), which is a coefficient
of the imposed noise matrix. The noise matrix is comprised of random values (0 1) with the same size as
the MNIST images which have pixel values ranging from 0 to 1 originally. It is clear that the accuracy
decreases slightly until the noise rate α approaches 3.5, which indicates a strong noise-tolerant capability
of the proposed MCAM-based BNN computing.

C. Comparison with other CAM units and peripheral circuit
Table 3 shows the comparison of different CAM units’ performance with our work. The energy efficiency
is defined as the average energy consumption per search for each unit, which is about 0.18fJ/bit/search
in our work. The latency is defined as search delay between rising edges of the clock and VML, which
corresponds to the time interval of pre-charge stage and match stage [31]. The area is evaluated by the
device structures & number and process node, considering the device dimensions are unknown in the
SPICE simulation. Compared to other related work, the proposed CAM shows advantages in terms of
average energy consumption, reconfigurable characteristics, multi-state storage and bitwise operation.
The proposed architecture shows advantages in the multi-functional characteristics, high-integrated ar-
ray and potentials for off-line training. The architecture can accomplish the typical 16-state MCAM
function and bitwise operation of XNOR calculations with energy consumption of 0.18fJ/bit/search.
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Figure 7 (a) The different accuracies with various 3D array sizes in the form of x × y × z; (b) The accuracies versus mapped

layer implemented by only cnov2 (first column), only fc1 (second column), as well as both cnov2 and fc1 (third column).

Figure 8 The recognition accuracy (left) and error (right) with noise disturbance, where the noise is 28 × 28 random matrix

between 0 ∼ 1 and the rate α is a coefficient.

Benefitting from the reliable characteristics and mature process of flash memory, the proposed CAM unit
is easy for large-scale and 3D integration. The design of two different DLs may provide the possibility
for accomplishing off-line training.

4 Conclusion

In this work, a reconfigurable MCAM unit (2Flash2T) with 14 stable states is proposed to realize the
XNOR and POPCOUNT operations. This allows the input values applied on the reconfigurable unit
to realize a 14-state search function as a traditional MCAM unit does. Based on the block matrix
multiplication scheme, the proposed 3D MCAM array is capable of disposing of the well-known MNIST
dataset and receives a recognition accuracy of up to ∼98.63% and a noise-tolerant capability with ∼300%
input noise without apparent accuracy drop. A novel design of 3D MCAM architecture based on the 65
nm flash memory for high energy-efficient, resource-constrained, and robust Edge AI tasks is provided
by the findings of our work.
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